BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 11169015)

  • 1. The folate cycle and disease in humans.
    Fowler B
    Kidney Int Suppl; 2001 Feb; 78():S221-9. PubMed ID: 11169015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Susceptibility to intestinal tumorigenesis in folate-deficient mice may be influenced by variation in one-carbon metabolism and DNA repair.
    Knock E; Deng L; Krupenko N; Mohan RD; Wu Q; Leclerc D; Gupta S; Elmore CL; Kruger W; Tini M; Rozen R
    J Nutr Biochem; 2011 Nov; 22(11):1022-9. PubMed ID: 21193302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative effects of folate antagonists versus enzymatic folate depletion on folate and thymidine enzymes in cultured mammalian cells.
    Chello PL; McQueen CA; DeAngelis LM; Bertino JR
    Cancer Treat Rep; 1977 Jul; 61(4):539-48. PubMed ID: 195727
    [No Abstract]   [Full Text] [Related]  

  • 4. Whole-cell detection by 13C NMR of metabolic flux through the C1-tetrahydrofolate synthase/serine hydroxymethyltransferase enzyme system and effect of antifolate exposure in Saccharomyces cerevisiae.
    Pasternack LB; Laude DA; Appling DR
    Biochemistry; 1994 Jun; 33(23):7166-73. PubMed ID: 8003483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic aspects of folate metabolism.
    Erbe RW
    Adv Hum Genet; 1979; 9():293-354, 367-9. PubMed ID: 393094
    [No Abstract]   [Full Text] [Related]  

  • 6. Genetic defects of folate and cobalamin metabolism.
    Fowler B
    Eur J Pediatr; 1998 Apr; 157 Suppl 2():S60-6. PubMed ID: 9587028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae.
    Pasternack LB; Laude DA; Appling DR
    Biochemistry; 1992 Sep; 31(37):8713-9. PubMed ID: 1390656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetrahydropterolypolyglutamate derivatives as substrates of two multifunctional proteins with folate-dependent enzyme activities.
    Mackenzie RE; Baugh CM
    Biochim Biophys Acta; 1980 Jan; 611(1):187-95. PubMed ID: 7350916
    [No Abstract]   [Full Text] [Related]  

  • 9. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes.
    Shih C; Chen VJ; Gossett LS; Gates SB; MacKellar WC; Habeck LL; Shackelford KA; Mendelsohn LG; Soose DJ; Patel VF; Andis SL; Bewley JR; Rayl EA; Moroson BA; Beardsley GP; Kohler W; Ratnam M; Schultz RM
    Cancer Res; 1997 Mar; 57(6):1116-23. PubMed ID: 9067281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Molecular genetics of the remethylation of homocysteine].
    Chango A; Parrot-Roulaud F; Nicolas J
    Ann Biol Clin (Paris); 1999; 57(1):37-42. PubMed ID: 9920965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase from porcine liver. Interaction between the dehydrogenase and cyclohydrolase activities of the multifunctional enzyme.
    Cohen L; Mackenzie RE
    Biochim Biophys Acta; 1978 Feb; 522(2):311-7. PubMed ID: 23838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of folate transporters in human placenta and implications for homocysteine metabolism.
    Solanky N; Requena Jimenez A; D'Souza SW; Sibley CP; Glazier JD
    Placenta; 2010 Feb; 31(2):134-43. PubMed ID: 20036773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of folate-dependent enzymes from rabbit liver.
    Schirch V
    Methods Enzymol; 1997; 281():146-61. PubMed ID: 9250979
    [No Abstract]   [Full Text] [Related]  

  • 14. Maternal Mthfd1 disruption impairs fetal growth but does not cause neural tube defects in mice.
    Beaudin AE; Perry CA; Stabler SP; Allen RH; Stover PJ
    Am J Clin Nutr; 2012 Apr; 95(4):882-91. PubMed ID: 22378735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial C1-tetrahydrofolate synthase (MTHFD1L) supports the flow of mitochondrial one-carbon units into the methyl cycle in embryos.
    Pike ST; Rajendra R; Artzt K; Appling DR
    J Biol Chem; 2010 Feb; 285(7):4612-20. PubMed ID: 19948730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The role of homocysteine and methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase polymorphisms in the development of cardiovascular diseases and hypertension].
    Marosi K; Agota A; Végh V; Joó JG; Langmár Z; Kriszbacher I; Nagy ZB
    Orv Hetil; 2012 Mar; 153(12):445-53. PubMed ID: 22411217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adverse effect of nitrous oxide in a child with 5,10-methylenetetrahydrofolate reductase deficiency.
    Selzer RR; Rosenblatt DS; Laxova R; Hogan K
    N Engl J Med; 2003 Jul; 349(1):45-50. PubMed ID: 12840091
    [No Abstract]   [Full Text] [Related]  

  • 18. Disorders of homocysteine metabolism.
    Fowler B
    J Inherit Metab Dis; 1997 Jun; 20(2):270-85. PubMed ID: 9211199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moderate folic acid supplementation and MTHFD1-synthetase deficiency in mice, a model for the R653Q variant, result in embryonic defects and abnormal placental development.
    Christensen KE; Hou W; Bahous RH; Deng L; Malysheva OV; Arning E; Bottiglieri T; Caudill MA; Jerome-Majewska LA; Rozen R
    Am J Clin Nutr; 2016 Nov; 104(5):1459-1469. PubMed ID: 27707701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma.
    Lee D; Xu IM; Chiu DK; Lai RK; Tse AP; Lan Li L; Law CT; Tsang FH; Wei LL; Chan CY; Wong CM; Ng IO; Wong CC
    J Clin Invest; 2017 May; 127(5):1856-1872. PubMed ID: 28394261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.