BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 11169015)

  • 41. Chemical synthesis of folylpolyglutamates, their reduction to tetrahydro derivatives, and their activity with yeast C1-THF synthase.
    Rabinowitz JC
    Adv Exp Med Biol; 1983; 163():75-83. PubMed ID: 6351555
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A general method for generation and analysis of defined mutations in enzymes involved in a tetrahydrofolate-interconversion pathway.
    Barlowe CK; Appling DR
    Biofactors; 1989 Mar; 2(1):57-63. PubMed ID: 2679653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Decreased methylene tetrahydrofolate reductase activity due to the 677C-->T mutation in families with spina bifida offspring.
    van der Put NM; van den Heuvel LP; Steegers-Theunissen RP; Trijbels FJ; Eskes TK; Mariman EC; den Heyer M; Blom HJ
    J Mol Med (Berl); 1996 Nov; 74(11):691-4. PubMed ID: 8956155
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Methionine synthesis, aminoimidazole carboxamide excretion and folate levels in pregnant rats.
    N'Diaye F; Hitier Y; Poiter de Courcy G; Goubern M; Bourdel G
    J Nutr; 1980 Mar; 110(3):522-31. PubMed ID: 6965714
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Are the redox properties of tetrahydrofolate cofactors utilized in folate-dependent reactions?
    Matthews RG
    Fed Proc; 1982 Jul; 41(9):2600-4. PubMed ID: 7044835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 13C nuclear magnetic resonance detection of interactions of serine hydroxymethyltransferase with C1-tetrahydrofolate synthase and glycine decarboxylase complex activities in Arabidopsis.
    Prabhu V; Chatson KB; Abrams GD; King J
    Plant Physiol; 1996 Sep; 112(1):207-16. PubMed ID: 8819325
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nuclear enrichment of folate cofactors and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) protect de novo thymidylate biosynthesis during folate deficiency.
    Field MS; Kamynina E; Agunloye OC; Liebenthal RP; Lamarre SG; Brosnan ME; Brosnan JT; Stover PJ
    J Biol Chem; 2014 Oct; 289(43):29642-50. PubMed ID: 25213861
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immunolocalization of C1-tetrahydrofolate synthase in the rat kidney.
    Appling DR; Ayo SH; Kreisberg JI
    Biochem Biophys Res Commun; 1990 Apr; 168(2):625-30. PubMed ID: 2110454
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 5-methyltetrahydrofolate: synthesis and utilization in normal and SV40-transformed BHK-21 cells.
    Jacobsen SJ; North JA; Rao NA; Mangum JH
    Biochem Biophys Res Commun; 1977 May; 76(1):46-53. PubMed ID: 194591
    [No Abstract]   [Full Text] [Related]  

  • 50. Thymidylate synthase, dihydrofolate reductase, folyl binder, 10-formyl-H4PteGlu synthetase, 5,10-methenyl-H4PteGlu cyclohydrolase and 5,10-methylene-H4PteGlu dehydrogenase derived from cells of human origin.
    Cheng YC; Domin BA; Conrad D
    Adv Exp Med Biol; 1983; 163():85-94. PubMed ID: 6351556
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The folate-mediated synthesis of ribothymidylate in transfer ribonucleic acid, and evidence for multifunctional enzymes in one-carbon metabolism in eukaryotic sources.
    Rabinowitz JC
    Biochem Soc Trans; 1976; 4(5):850-3. PubMed ID: 826434
    [No Abstract]   [Full Text] [Related]  

  • 52. Genetic modulation of homocysteinemia.
    Rozen R
    Semin Thromb Hemost; 2000; 26(3):255-61. PubMed ID: 11011843
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Folate derivatives in human cells: studies on normal and 5,10-methylenetetrahydrofolate reductase-deficient fibroblasts.
    Foo SK; McSloy RM; Rousseau C; Shane B
    J Nutr; 1982 Aug; 112(8):1600-8. PubMed ID: 7047695
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Folate enzymes in Ehrlich ascites carcinoma-bearing mice.
    ChmurzyƄska W; Manteuffel-Cymborowska M; Sikora E; Grzelakowska-Sztabert B
    Cancer Lett; 1984 Dec; 25(2):217-24. PubMed ID: 6391650
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The one-carbon metabolism pathway highlights therapeutic targets for gastrointestinal cancer (Review).
    Konno M; Asai A; Kawamoto K; Nishida N; Satoh T; Doki Y; Mori M; Ishii H
    Int J Oncol; 2017 Apr; 50(4):1057-1063. PubMed ID: 28259896
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Altered folate metabolism and disposition in mothers affected by a spina bifida pregnancy: influence of 677c --> t methylenetetrahydrofolate reductase and 2756a --> g methionine synthase genotypes.
    Lucock M; Daskalakis I; Briggs D; Yates Z; Levene M
    Mol Genet Metab; 2000 May; 70(1):27-44. PubMed ID: 10833329
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Homocysteine plasma levels in patients treated with antiepileptic drugs depend on folate and vitamin B12 serum levels, but not on genetic variants of homocysteine metabolism.
    Semmler A; Moskau-Hartmann S; Stoffel-Wagner B; Elger C; Linnebank M
    Clin Chem Lab Med; 2013 Mar; 51(3):665-9. PubMed ID: 23382314
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Formyl-methenyl-methylenetetrahydrofolate synthetase (combined): a multifunctional protein in eukaryotic folate metabolism.
    Paukert JL; Rabinowitz JC
    Methods Enzymol; 1980; 66():616-26. PubMed ID: 6990198
    [No Abstract]   [Full Text] [Related]  

  • 59. Regulation of expression of the ADE3 gene for yeast C1-tetrahydrofolate synthase, a trifunctional enzyme involved in one-carbon metabolism.
    Appling DR; Rabinowitz JC
    J Biol Chem; 1985 Jan; 260(2):1248-56. PubMed ID: 3881424
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-stranded DNA binding activity of C1-tetrahydrofolate synthase enzymes.
    Wahls WP; Song JM; Smith GR
    J Biol Chem; 1993 Nov; 268(32):23792-8. PubMed ID: 8226914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.