BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 11169381)

  • 1. The presence of two modes of binding to calf thymus DNA by metal-free bleomycin: a low frequency Raman study.
    Rajani C; Kincaid JR; Petering DH
    Biopolymers; 1999; 52(3):129-46. PubMed ID: 11169381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic approach toward the analysis of drug-DNA interactions using Raman spectroscopy: the binding of metal-free bleomycins A(2) and B(2) to calf thymus DNA.
    Rajani C; Kincaid JR; Petering DH
    Biopolymers; 1999; 52(3):110-28. PubMed ID: 11169380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of unfused polyaromatic heterocycles with DNA: intercalation, groove-binding and bleomycin amplification.
    Wilson WD; Tanious FA; Barton HJ; Wydra RL; Jones RL; Boykin DW; Strekowski L
    Anticancer Drug Des; 1990 Feb; 5(1):31-42. PubMed ID: 1690546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local conformational changes induced in B-DNA by ethidium intercalation.
    Benevides JM; Thomas GJ
    Biochemistry; 2005 Mar; 44(8):2993-9. PubMed ID: 15723542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping of the cleavage-associated bleomycin binding site on DNA with a new method based on site-specific blockage of the minor groove with N2-isobutyrylguanine.
    Suh D; Povirk LF
    Biochemistry; 1997 Apr; 36(14):4248-57. PubMed ID: 9100020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic studies of 9-hydroxyellipticine binding to DNA.
    Ismail MA; Sanders KJ; Fennell GC; Latham HC; Wormell P; Rodger A
    Biopolymers; 1998 Sep; 46(3):127-43. PubMed ID: 9741963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial B-to-A DNA transition upon minor groove binding of protein Sac7d monitored by Raman spectroscopy.
    Dostál L; Chen CY; Wang AH; Welfle H
    Biochemistry; 2004 Aug; 43(30):9600-9. PubMed ID: 15274614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HU protein employs similar mechanisms of minor-groove recognition in binding to different B-DNA sites: demonstration by Raman spectroscopy.
    Serban D; Benevides JM; Thomas GJ
    Biochemistry; 2003 Jun; 42(24):7390-9. PubMed ID: 12809494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectroscopic study of the effects of Ca2+, Mg2+, Zn2+, and Cd2+ ions on calf thymus DNA: binding sites and conformational changes.
    Langlais M; Tajmir-Riahi HA; Savoie R
    Biopolymers; 1990; 30(7-8):743-52. PubMed ID: 2275976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectroscopy of an O(2)-Co(II)bleomycin-calf thymus DNA adduct: alternate polymer conformations.
    Rajani C; Kincaid JR; Petering DH
    Biophys Chem; 2001 Dec; 94(3):219-36. PubMed ID: 11804732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of the Raman spectrum of DNA. II. Raman signatures of premelting and melting transitions of poly(dA).poly(dT) and comparison with poly(dA-dT).poly(dA-dT).
    Movileanu L; Benevides JM; Thomas GJ
    Biopolymers; 2002 Mar; 63(3):181-94. PubMed ID: 11787006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman studies of HOO-Co(III)bleomycin and Co(III)bleomycin: identification of two important vibrational modes, nu(Co-OOH) and nu(O-OH).
    Rajani C; Kincaid JR; Petering DH
    J Am Chem Soc; 2004 Mar; 126(12):3829-36. PubMed ID: 15038737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency dynamics and Raman scattering of crystals, of B-, A-, and Z-DNA, and fibers of C-DNA.
    Lamba OP; Wang AH; Thomas GJ
    Biopolymers; 1989 Feb; 28(2):667-78. PubMed ID: 2713457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd.
    Duguid J; Bloomfield VA; Benevides J; Thomas GJ
    Biophys J; 1993 Nov; 65(5):1916-28. PubMed ID: 8298021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Temperature dependence study of calf thymus DNA by Raman spectra].
    Dong RX; Yan XL; Wu J; Zhang AY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Sep; 24(9):1075-8. PubMed ID: 15762526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulations of Raman spectra of guanine-cytosine Watson-Crick and protonated Hoogsteen base pairs.
    Morari CI; Muntean CM
    Biopolymers; 2003; 72(5):339-44. PubMed ID: 12949824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics in the DNA recognition by DAPI: exploration of the various binding modes.
    Banerjee D; Pal SK
    J Phys Chem B; 2008 Jan; 112(3):1016-21. PubMed ID: 18171050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercalation of daunomycin into stacked DNA base pairs. DFT study of an anticancer drug.
    Barone G; Guerra CF; Gambino N; Silvestri A; Lauria A; Almerico AM; Bickelhaupt FM
    J Biomol Struct Dyn; 2008 Aug; 26(1):115-30. PubMed ID: 18533732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity.
    Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL
    J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman microspectroscopic study of effects of Na(I) and Mg(II) ions on low pH induced DNA structural changes.
    Muntean CM; Segers-Nolten GM
    Biopolymers; 2003; 72(4):225-9. PubMed ID: 12833476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.