These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11169531)

  • 21. Characterization of asparagine 330 deamidation in an Fc-fragment of IgG1 using cation exchange chromatography and peptide mapping.
    Zhang YT; Hu J; Pace AL; Wong R; Wang YJ; Kao YH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Aug; 965():65-71. PubMed ID: 24999246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solid state chemical instability of an asparaginyl residue in a model hexapeptide.
    Oliyai C; Patel JP; Carr L; Borchardt RT
    J Pharm Sci Technol; 1994; 48(3):167-23. PubMed ID: 8069519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solid-state stability of human insulin. I. Mechanism and the effect of water on the kinetics of degradation in lyophiles from pH 2-5 solutions.
    Strickley RG; Anderson BD
    Pharm Res; 1996 Aug; 13(8):1142-53. PubMed ID: 8865303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical stability of peptides in polymers. 2. Discriminating between solvent and plasticizing effects of water on peptide deamidation in poly(vinylpyrrolidone).
    Lai MC; Hageman MJ; Schowen RL; Borchardt RT; Laird BB; Topp EM
    J Pharm Sci; 1999 Oct; 88(10):1081-9. PubMed ID: 10514359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization.
    Wakankar AA; Borchardt RT
    J Pharm Sci; 2006 Nov; 95(11):2321-36. PubMed ID: 16960822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide.
    Oliyai C; Borchardt RT
    Pharm Res; 1993 Jan; 10(1):95-102. PubMed ID: 8430066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specific catalysis of asparaginyl deamidation by carboxylic acids: kinetic, thermodynamic, and quantitative structure-property relationship analyses.
    Connolly BD; Tran B; Moore JM; Sharma VK; Kosky A
    Mol Pharm; 2014 Apr; 11(4):1345-58. PubMed ID: 24620787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling deamidation rates in a model peptide: effects of temperature, peptide concentration, and additives.
    Stratton LP; Kelly RM; Rowe J; Shively JE; Smith DD; Carpenter JF; Manning MC
    J Pharm Sci; 2001 Dec; 90(12):2141-8. PubMed ID: 11745773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Product catalyzes the deamidation of D145N dehalogenase to produce the wild-type enzyme.
    Xiang H; Dong J; Carey PR; Dunaway-Mariano D
    Biochemistry; 1999 Mar; 38(13):4207-13. PubMed ID: 10194337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deamidation of a model hexapeptide in poly(vinyl alcohol) hydrogels and xerogels.
    Lai MC; Schowen RL; Borchardt RT; Topp EM
    J Pept Res; 2000 Feb; 55(2):93-101. PubMed ID: 10784025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Asparagine deamidation: pH-dependent mechanism from density functional theory.
    Peters B; Trout BL
    Biochemistry; 2006 Apr; 45(16):5384-92. PubMed ID: 16618128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2009 Feb; 113(6):1111-20. PubMed ID: 19152321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The relative rates of glutamine and asparagine deamidation in glucagon fragment 22-29 under acidic conditions.
    Joshi AB; Kirsch LE
    J Pharm Sci; 2002 Nov; 91(11):2331-45. PubMed ID: 12379918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reactivity toward deamidation of asparagine residues in beta-turn structures.
    Xie M; Aubé J; Borchardt RT; Morton M; Topp EM; Vander Velde D; Schowen RL
    J Pept Res; 2000 Sep; 56(3):165-71. PubMed ID: 11007273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deamidation and succinimide formation by gamma-N-methylasparagine: potential pitfalls of amino acid analysis.
    Klotz AV; Higgins BM
    Arch Biochem Biophys; 1991 Nov; 291(1):113-20. PubMed ID: 1929425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequence and Solution Effects on the Prevalence of d-Isomers Produced by Deamidation.
    Riggs DL; Gomez SV; Julian RR
    ACS Chem Biol; 2017 Nov; 12(11):2875-2882. PubMed ID: 28984444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Why does Asn71 deamidate faster than Asn15 in the enzyme triosephosphate isomerase? Answers from microsecond molecular dynamics simulation and QM/MM free energy calculations.
    Ugur I; Marion A; Aviyente V; Monard G
    Biochemistry; 2015 Feb; 54(6):1429-39. PubMed ID: 25602614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reaction mechanism of deamidation of asparaginyl residues in peptides: effect of solvent molecules.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2006 Jul; 110(27):8354-65. PubMed ID: 16821819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of the cyclic imide in alternate degradation pathways for asparagine-containing peptides and proteins.
    Dehart MP; Anderson BD
    J Pharm Sci; 2007 Oct; 96(10):2667-85. PubMed ID: 17518358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure Based Prediction of Asparagine Deamidation Propensity in Monoclonal Antibodies.
    Yan Q; Huang M; Lewis MJ; Hu P
    MAbs; 2018; 10(6):901-912. PubMed ID: 29958069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.