BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 11169995)

  • 1. Amygdalar activation alters the hippocampal GABA system: "partial" modelling for postmortem changes in schizophrenia.
    Berretta S; Munno DW; Benes FM
    J Comp Neurol; 2001 Mar; 431(2):129-38. PubMed ID: 11169995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rodent model of schizophrenia derived from postmortem studies.
    Berretta S; Gisabella B; Benes FM
    Behav Brain Res; 2009 Dec; 204(2):363-8. PubMed ID: 19539659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term effects of amygdala GABA receptor blockade on specific subpopulations of hippocampal interneurons.
    Berretta S; Lange N; Bhattacharyya S; Sebro R; Garces J; Benes FM
    Hippocampus; 2004; 14(7):876-94. PubMed ID: 15382257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basal expression and induction of glutamate decarboxylase and GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus.
    Sloviter RS; Dichter MA; Rachinsky TL; Dean E; Goodman JH; Sollas AL; Martin DL
    J Comp Neurol; 1996 Sep; 373(4):593-618. PubMed ID: 8889946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amygdala-dependent regulation of electrical properties of hippocampal interneurons in a model of schizophrenia.
    Gisabella B; Cunningham MG; Bolshakov VY; Benes FM
    Biol Psychiatry; 2009 Mar; 65(6):464-72. PubMed ID: 19027103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rat model for neural circuitry abnormalities in schizophrenia.
    Berretta S; Benes FM
    Nat Protoc; 2006; 1(2):833-9. PubMed ID: 17406315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus.
    Marty S; Wehrlé R; Sotelo C
    J Neurosci; 2000 Nov; 20(21):8087-95. PubMed ID: 11050130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kainate receptor-mediated modulation of hippocampal fast spiking interneurons in a rat model of schizophrenia.
    Gisabella B; Bolshakov VY; Benes FM
    PLoS One; 2012; 7(3):e32483. PubMed ID: 22396770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional differences in GABAergic modulation for TEA-induced synaptic plasticity in rat hippocampal CA1, CA3 and dentate gyrus.
    Suzuki E; Okada T
    Neurosci Res; 2007 Oct; 59(2):183-90. PubMed ID: 17669533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of ER alpha and GAD colocalization in the hippocampus of the adult female rat.
    Hart SA; Patton JD; Woolley CS
    J Comp Neurol; 2001 Nov; 440(2):144-55. PubMed ID: 11745614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of medial septal glutamatergic neurons and their projection to the hippocampus.
    Colom LV; Castaneda MT; Reyna T; Hernandez S; Garrido-Sanabria E
    Synapse; 2005 Dec; 58(3):151-64. PubMed ID: 16108008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amygdalo-entorhinal inputs to the hippocampal formation in relation to schizophrenia.
    Benes FM; Berretta S
    Ann N Y Acad Sci; 2000 Jun; 911():293-304. PubMed ID: 10911881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building models for postmortem abnormalities in hippocampus of schizophrenics.
    Benes FM
    Schizophr Res; 2015 Sep; 167(1-3):73-83. PubMed ID: 25749020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiepileptic drug resistant rats differ from drug responsive rats in GABA A receptor subunit expression in a model of temporal lobe epilepsy.
    Bethmann K; Fritschy JM; Brandt C; Löscher W
    Neurobiol Dis; 2008 Aug; 31(2):169-87. PubMed ID: 18562204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereological quantification of GAD-67-immunoreactive neurons and boutons in the hippocampus of middle-aged and old Fischer 344 x Brown Norway rats.
    Shi L; Argenta AE; Winseck AK; Brunso-Bechtold JK
    J Comp Neurol; 2004 Oct; 478(3):282-91. PubMed ID: 15368530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus.
    Freichel C; Potschka H; Ebert U; Brandt C; Löscher W
    Neuroscience; 2006 Sep; 141(4):2177-94. PubMed ID: 16797850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a GABAergic interface between cortical afferents and brainstem projection neurons in the rat central extended amygdala.
    Sun N; Yi H; Cassell MD
    J Comp Neurol; 1994 Feb; 340(1):43-64. PubMed ID: 7513719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABAergic axon terminals at perisomatic and dendritic inhibitory sites show different immunoreactivities against two GAD isoforms, GAD67 and GAD65, in the mouse hippocampus: a digitized quantitative analysis.
    Fukuda T; Aika Y; Heizmann CW; Kosaka T
    J Comp Neurol; 1998 Jun; 395(2):177-94. PubMed ID: 9603371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in extracellular glutamate and GABA levels in the hippocampal CA3 and CA1 areas and the induction of glutamic acid decarboxylase-67 in dentate granule cells of rats treated with kainic acid.
    Ding R; Asada H; Obata K
    Brain Res; 1998 Jul; 800(1):105-13. PubMed ID: 9685600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamic acid decarboxylase-67-positive hippocampal interneurons undergo a permanent reduction in number following kainic acid-induced degeneration of ca3 pyramidal neurons.
    Shetty AK; Turner DA
    Exp Neurol; 2001 Jun; 169(2):276-97. PubMed ID: 11358442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.