These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1117010)

  • 1. A theoretical model for the covalent assembly of immunoglobulins. Application to the assembly of human immunoglobulin G in vitro.
    Percy JR; Percy ME; Dorrington KJ
    J Biol Chem; 1975 Mar; 250(6):2398-400. PubMed ID: 1117010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent assembly of mouse immunoglobulin G subclasses in vitro: application of a theoretical model for interchain disulfide bond formation.
    Percy ME; Baumal R; Dorrington KJ; Percy JR
    Can J Biochem; 1976 Aug; 54(8):675-87. PubMed ID: 953849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic study in vitro of the reoxidation of interchain disulfide bonds in a human immunoglobulin IgGLk. Correlation between sulfhydryl disappearance and intermediates in covalent assembly of H2L2.
    Sears DW; Mohrer J; Beychok S
    Proc Natl Acad Sci U S A; 1975 Jan; 72(1):353-7. PubMed ID: 235127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of interchain disulfide bonds in Bence Jones proteins and immunoglobulins.
    Kishida F; Azuma T; Hamaguchi K
    J Biochem; 1976 Jan; 79(1):91-105. PubMed ID: 7556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of three major subclasses of mouse immunoglobulin G: a theoretical model for covalent assembly in vivo.
    Percy JR; Percy ME; Baumal R
    Can J Biochem; 1976 Aug; 54(8):688-98. PubMed ID: 953850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical models for the covalent assembly of immunoglobulins.
    Hess VL; Szabo A
    Biophys Chem; 1980 Dec; 12(3-4):243-53. PubMed ID: 6784784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acquisition of the covalent quaternary structure of an immunoglobulin G molecule. Theoretical reoxidation models.
    Sears DW; Beychok S
    Biochemistry; 1977 May; 16(9):2026-31. PubMed ID: 403937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular-mechanics study of the conformation of the interchain disulfide of human immunoglobulin G4 (IgG4).
    Snow ME; Amzel LM
    Mol Immunol; 1988 Oct; 25(10):1019-24. PubMed ID: 3146023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of secretory component to dimers of immunoglobulin A in vitro. Mechanism of the covalent bond formation.
    Lindh E; Björk I
    Eur J Biochem; 1976 Feb; 62(2):263-70. PubMed ID: 1253791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human IgG is substrate for the thioredoxin system: differential cleavage pattern of interchain disulfide bridges in IgG subclasses.
    Magnusson CG; Björnstedt M; Holmgren A
    Mol Immunol; 1997 Jul; 34(10):709-17. PubMed ID: 9430198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystallizable human myeloma protein Dob has a hinge-region deletion.
    Steiner LA; Lopes AD
    Biochemistry; 1979 Sep; 18(19):4054-67. PubMed ID: 114208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro system for studying the kinetics of interchain disulfide bond formation in immunoglobulin G.
    Petersen JG; Dorrington KJ
    J Biol Chem; 1974 Sep; 249(17):5633-41. PubMed ID: 4212934
    [No Abstract]   [Full Text] [Related]  

  • 13. Acquisition of the covalent quaternary structure of an immunoglobulin G molecule. Reoxidative assembly in vitro.
    Sears DW; Kazin AR; Mohrer J; Friedman F; Beychok S
    Biochemistry; 1977 May; 16(9):2016-25. PubMed ID: 403936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of interchain disulfide bonds in Bence Jones proteins and Fab(t) fragments of immunoglobulin G through thiol-disulfide interchange.
    Kato M; Azuma T; Isobe T; Hamaguchi K
    J Biochem; 1978 Dec; 84(6):1475-83. PubMed ID: 738998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linkage and assembly of polymeric IgA immunoglobulins.
    Chapuis RM; Koshland ME
    Biochemistry; 1975 Mar; 14(6):1320-6. PubMed ID: 804317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent immunoglobulin assembly in vitro: reactivity of light chain covalent dimers (L2) and blocked light chain monomers.
    Kazin AR; Beychok S
    Science; 1978 Feb; 199(4329):688-90. PubMed ID: 415360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unstable inter-H chain disulfide bonding and non-covalently associated J chain in rat dimeric IgA.
    Chintalacharuvu KR; Lamm ME; Kaetzel CS
    Mol Immunol; 1993 Jan; 30(1):19-26. PubMed ID: 8417371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunoglobulin disulfide bridges: theme and variations.
    Steiner LA
    Biosci Rep; 1985; 5(10-11):973-89. PubMed ID: 3938301
    [No Abstract]   [Full Text] [Related]  

  • 19. Energy transfer distance measurements in immunoglobulins. III. Location of the light-heavy interchain disulfide bond in rabbit immunoglobulin G antibody.
    Bunting JR; Cathou RE
    J Mol Biol; 1974 Aug; 87(2):329-38. PubMed ID: 4479629
    [No Abstract]   [Full Text] [Related]  

  • 20. Immunoglobulin A. Arrangement of disulfide bridges in the "hinge" region of an immunoglobulin lin A-1 human myeloma protein.
    Wolfenstein-Todel C; Prelli F; Frangione B; Franklin EC
    Biochemistry; 1973 Dec; 12(25):5195-7. PubMed ID: 4601226
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.