BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 11170137)

  • 1. Detrimental effect of cancer preventive phytochemicals silymarin, genistein and epigallocatechin 3-gallate on epigenetic events in human prostate carcinoma DU145 cells.
    Bhatia N; Agarwal R
    Prostate; 2001 Feb; 46(2):98-107. PubMed ID: 11170137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell signaling and regulators of cell cycle as molecular targets for prostate cancer prevention by dietary agents.
    Agarwal R
    Biochem Pharmacol; 2000 Oct; 60(8):1051-9. PubMed ID: 11007941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential responses of skin cancer-chemopreventive agents silibinin, quercetin, and epigallocatechin 3-gallate on mitogenic signaling and cell cycle regulators in human epidermoid carcinoma A431 cells.
    Bhatia N; Agarwal C; Agarwal R
    Nutr Cancer; 2001; 39(2):292-9. PubMed ID: 11759294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A flavonoid antioxidant, silymarin, inhibits activation of erbB1 signaling and induces cyclin-dependent kinase inhibitors, G1 arrest, and anticarcinogenic effects in human prostate carcinoma DU145 cells.
    Zi X; Grasso AW; Kung HJ; Agarwal R
    Cancer Res; 1998 May; 58(9):1920-9. PubMed ID: 9581834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grape seed extract inhibits EGF-induced and constitutively active mitogenic signaling but activates JNK in human prostate carcinoma DU145 cells: possible role in antiproliferation and apoptosis.
    Tyagi A; Agarwal R; Agarwal C
    Oncogene; 2003 Mar; 22(9):1302-16. PubMed ID: 12618755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impairment of erbB1 receptor and fluid-phase endocytosis and associated mitogenic signaling by inositol hexaphosphate in human prostate carcinoma DU145 cells.
    Zi X; Singh RP; Agarwal R
    Carcinogenesis; 2000 Dec; 21(12):2225-35. PubMed ID: 11133812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effect of silibinin on ligand binding to erbB1 and associated mitogenic signaling, growth, and DNA synthesis in advanced human prostate carcinoma cells.
    Sharma Y; Agarwal C; Singh AK; Agarwal R
    Mol Carcinog; 2001 Apr; 30(4):224-36. PubMed ID: 11346885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anticarcinogenic effect of a polyphenolic fraction isolated from grape seeds in human prostate carcinoma DU145 cells: modulation of mitogenic signaling and cell-cycle regulators and induction of G1 arrest and apoptosis.
    Agarwal C; Sharma Y; Agarwal R
    Mol Carcinog; 2000 Jul; 28(3):129-38. PubMed ID: 10942529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silibinin impairs constitutively active TGFalpha-EGFR autocrine loop in advanced human prostate carcinoma cells.
    Tyagi A; Sharma Y; Agarwal C; Agarwal R
    Pharm Res; 2008 Sep; 25(9):2143-50. PubMed ID: 18253818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells.
    Gupta S; Hussain T; Mukhtar H
    Arch Biochem Biophys; 2003 Feb; 410(1):177-85. PubMed ID: 12559991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases.
    Sah JF; Balasubramanian S; Eckert RL; Rorke EA
    J Biol Chem; 2004 Mar; 279(13):12755-62. PubMed ID: 14701854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of mitogen-activated protein kinase activation and cell cycle regulators by the potent skin cancer preventive agent silymarin.
    Zi X; Agarwal R
    Biochem Biophys Res Commun; 1999 Sep; 263(2):528-36. PubMed ID: 10491326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins.
    Zi X; Feyes DK; Agarwal R
    Clin Cancer Res; 1998 Apr; 4(4):1055-64. PubMed ID: 9563902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK-independent ERK1/2 activation.
    Albrecht DS; Clubbs EA; Ferruzzi M; Bomser JA
    Chem Biol Interact; 2008 Jan; 171(1):89-95. PubMed ID: 17931610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer.
    Shankar S; Suthakar G; Srivastava RK
    Front Biosci; 2007 Sep; 12():5039-51. PubMed ID: 17569628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inositol hexaphosphate inhibits growth, and induces G1 arrest and apoptotic death of prostate carcinoma DU145 cells: modulation of CDKI-CDK-cyclin and pRb-related protein-E2F complexes.
    Singh RP; Agarwal C; Agarwal R
    Carcinogenesis; 2003 Mar; 24(3):555-63. PubMed ID: 12663518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of retinoblastoma protein (Rb) phosphorylation at serine sites and an increase in Rb-E2F complex formation by silibinin in androgen-dependent human prostate carcinoma LNCaP cells: role in prostate cancer prevention.
    Tyagi A; Agarwal C; Agarwal R
    Mol Cancer Ther; 2002 May; 1(7):525-32. PubMed ID: 12479270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of cyclin-dependent kinases 2 and 4 activities as well as induction of Cdk inhibitors p21 and p27 during growth arrest of human breast carcinoma cells by (-)-epigallocatechin-3-gallate.
    Liang YC; Lin-Shiau SY; Chen CF; Lin JK
    J Cell Biochem; 1999 Oct; 75(1):1-12. PubMed ID: 10462699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells.
    Gupta S; Ahmad N; Nieminen AL; Mukhtar H
    Toxicol Appl Pharmacol; 2000 Apr; 164(1):82-90. PubMed ID: 10739747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isosilybin B and isosilybin A inhibit growth, induce G1 arrest and cause apoptosis in human prostate cancer LNCaP and 22Rv1 cells.
    Deep G; Oberlies NH; Kroll DJ; Agarwal R
    Carcinogenesis; 2007 Jul; 28(7):1533-42. PubMed ID: 17389612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.