BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

561 related articles for article (PubMed ID: 11170417)

  • 1. Conformation and dynamics of abasic sites in DNA investigated by time-resolved fluorescence of 2-aminopurine.
    Rachofsky EL; Seibert E; Stivers JT; Osman R; Ross JB
    Biochemistry; 2001 Jan; 40(4):957-67. PubMed ID: 11170417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing structure and dynamics of DNA with 2-aminopurine: effects of local environment on fluorescence.
    Rachofsky EL; Osman R; Ross JB
    Biochemistry; 2001 Jan; 40(4):946-56. PubMed ID: 11170416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation and dynamics of normal and damaged DNA.
    Rachofsky EL; Ross JB; Osman R
    Comb Chem High Throughput Screen; 2001 Dec; 4(8):675-706. PubMed ID: 11812262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of DNA flexibility in sequence-dependent activity of uracil DNA glycosylase.
    Seibert E; Ross JB; Osman R
    Biochemistry; 2002 Sep; 41(36):10976-84. PubMed ID: 12206669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3' ends justify the means.
    Mol CD; Hosfield DJ; Tainer JA
    Mutat Res; 2000 Aug; 460(3-4):211-29. PubMed ID: 10946230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2-Aminopurine fluorescence studies of base stacking interactions at abasic sites in DNA: metal-ion and base sequence effects.
    Stivers JT
    Nucleic Acids Res; 1998 Aug; 26(16):3837-44. PubMed ID: 9685503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of DNA strand cleavage by enzymes that act at abasic sites in DNA.
    Deutsch WA; Yacoub A
    Methods Mol Biol; 1999; 113():281-8. PubMed ID: 10443427
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase.
    Stivers JT; Pankiewicz KW; Watanabe KA
    Biochemistry; 1999 Jan; 38(3):952-63. PubMed ID: 9893991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic and static quenching of 2-aminopurine fluorescence by the natural DNA nucleotides in solution.
    Paterson KA; Arlt J; Jones AC
    Methods Appl Fluoresc; 2020 Feb; 8(2):025002. PubMed ID: 32000159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis.
    Hosfield DJ; Guan Y; Haas BJ; Cunningham RP; Tainer JA
    Cell; 1999 Aug; 98(3):397-408. PubMed ID: 10458614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA damage recognition and repair pathway coordination revealed by the structural biochemistry of DNA repair enzymes.
    Hosfield DJ; Daniels DS; Mol CD; Putnam CD; Parikh SS; Tainer JA
    Prog Nucleic Acid Res Mol Biol; 2001; 68():315-47. PubMed ID: 11554309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational dynamics of abasic DNA upon interactions with AP endonuclease 1 revealed by stopped-flow fluorescence analysis.
    Kanazhevskaya LY; Koval VV; Vorobjev YN; Fedorova OS
    Biochemistry; 2012 Feb; 51(6):1306-21. PubMed ID: 22243137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of chromosomal abasic sites in vivo involves at least three different repair pathways.
    Otterlei M; Kavli B; Standal R; Skjelbred C; Bharati S; Krokan HE
    EMBO J; 2000 Oct; 19(20):5542-51. PubMed ID: 11032821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-Aminopurine flipped into the active site of the adenine-specific DNA methyltransferase M.TaqI: crystal structures and time-resolved fluorescence.
    Lenz T; Bonnist EY; Pljevaljcić G; Neely RK; Dryden DT; Scheidig AJ; Jones AC; Weinhold E
    J Am Chem Soc; 2007 May; 129(19):6240-8. PubMed ID: 17455934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of preferential processing of clustered abasic DNA damages with APE1 in TATA box and CpG island by reaction kinetics and fluorescence dynamics.
    Singh V; Kumari B; Maity B; Seth D; Das P
    Mutat Res; 2014; 766-767():56-65. PubMed ID: 25847273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of the DNA base excision-repair pathway.
    Dianov G; Lindahl T
    Curr Biol; 1994 Dec; 4(12):1069-76. PubMed ID: 7535646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the origin of multiexponential fluorescence decays from 2-aminopurine-labeled dinucleotides.
    Remington JM; Philip AM; Hariharan M; Kohler B
    J Chem Phys; 2016 Oct; 145(15):155101. PubMed ID: 27782452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-Aminopurine as a fluorescent probe of DNA conformation and the DNA-enzyme interface.
    Jones AC; Neely RK
    Q Rev Biophys; 2015 May; 48(2):244-79. PubMed ID: 25881643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elements in abasic site recognition by the major human and Escherichia coli apurinic/apyrimidinic endonucleases.
    Erzberger JP; Barsky D; Schärer OD; Colvin ME; Wilson DM
    Nucleic Acids Res; 1998 Jun; 26(11):2771-8. PubMed ID: 9592167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.