BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 11170448)

  • 1. Contribution of electric field (Delta psi) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. control of pmf parsing into Delta psi and Delta pH by ionic strength.
    Cruz JA; Sacksteder CA; Kanazawa A; Kramer DM
    Biochemistry; 2001 Feb; 40(5):1226-37. PubMed ID: 11170448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Storage of light-driven transthylakoid proton motive force as an electric field (Deltapsi) under steady-state conditions in intact cells of Chlamydomonas reinhardtii.
    Cruz JA; Kanazawa A; Treff N; Kramer DM
    Photosynth Res; 2005 Aug; 85(2):221-33. PubMed ID: 16075322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf.
    Takizawa K; Cruz JA; Kanazawa A; Kramer DM
    Biochim Biophys Acta; 2007 Oct; 1767(10):1233-44. PubMed ID: 17765199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the light-induced electric potential difference (ΔΨ), the pH difference (ΔpH) and the proton motive force across the thylakoid membrane in C
    Lyu H; Lazár D
    J Theor Biol; 2017 Jan; 413():11-23. PubMed ID: 27816676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rethinking the existence of a steady-state Δψ component of the proton motive force across plant thylakoid membranes.
    Johnson MP; Ruban AV
    Photosynth Res; 2014 Feb; 119(1-2):233-42. PubMed ID: 23539362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts.
    Shikanai T; Yamamoto H
    Mol Plant; 2017 Jan; 10(1):20-29. PubMed ID: 27575692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts.
    Vershubskii AV; Trubitsin BV; Priklonskii VI; Tikhonov AN
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):388-401. PubMed ID: 27916634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Genetic Dissection of the Regulatory Network of Proton Motive Force in Chloroplasts.
    Shikanai T
    Plant Cell Physiol; 2024 May; 65(4):537-550. PubMed ID: 38150384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I.
    Shikanai T
    Photosynth Res; 2016 Sep; 129(3):253-60. PubMed ID: 26858094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroplastic ATP synthase plays an important role in the regulation of proton motive force in fluctuating light.
    Huang W; Cai YF; Wang JH; Zhang SB
    J Plant Physiol; 2018 Jul; 226():40-47. PubMed ID: 29698911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase.
    Kanazawa A; Kramer DM
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12789-94. PubMed ID: 12192092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balancing the central roles of the thylakoid proton gradient.
    Kramer DM; Cruz JA; Kanazawa A
    Trends Plant Sci; 2003 Jan; 8(1):27-32. PubMed ID: 12523997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion of stromal P(i) induces high 'energy-dependent' antenna exciton quenching (q(E)) by decreasing proton conductivity at CF(O)-CF(1) ATP synthase.
    Takizawa K; Kanazawa A; Kramer DM
    Plant Cell Environ; 2008 Feb; 31(2):235-43. PubMed ID: 17996016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of energy-dependent quenching of excitons in antennae of higher plants.
    Avenson TJ; Cruz JA; Kramer DM
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5530-5. PubMed ID: 15064404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that localized energy coupling in thylakoids can continue beyond the energetic threshold onset into steady illumination.
    Renganathan M; Pan RS; Ewy RG; Theg SM; Allnutt FC; Dilley RA
    Biochim Biophys Acta; 1991 Aug; 1059(1):16-27. PubMed ID: 1651763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of cyclic electron transport around photosystem I in regulating proton motive force.
    Wang C; Yamamoto H; Shikanai T
    Biochim Biophys Acta; 2015 Sep; 1847(9):931-8. PubMed ID: 25481109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thylakoid delta pH/delta psi are not required for the initial stages of Tat-dependent protein transport in tobacco protoplasts.
    Di Cola A; Bailey S; Robinson C
    J Biol Chem; 2005 Dec; 280(50):41165-70. PubMed ID: 16215228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hacking the thylakoid proton motive force for improved photosynthesis: modulating ion flux rates that control proton motive force partitioning into Δ
    Davis GA; Rutherford AW; Kramer DM
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1730):. PubMed ID: 28808100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bestrophin-like protein modulates the proton motive force across the thylakoid membrane in Arabidopsis.
    Duan Z; Kong F; Zhang L; Li W; Zhang J; Peng L
    J Integr Plant Biol; 2016 Oct; 58(10):848-858. PubMed ID: 26947269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 2. Relationships between proton motive force and ATP synthesis.
    Pitard B; Richard P; Duñach M; Rigaud JL
    Eur J Biochem; 1996 Feb; 235(3):779-88. PubMed ID: 8654429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.