BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11170450)

  • 1. Rate constants in two dimensions of electron transfer between pyruvate oxidase, a membrane enzyme, and ubiquinone (coenzyme Q8), its water-insoluble electron carrier.
    Marchal D; Pantigny J; Laval JM; Moiroux J; Bourdillon C
    Biochemistry; 2001 Feb; 40(5):1248-56. PubMed ID: 11170450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of a functional electron transfer in a biomimetic structure, including an electrode interface, phospholipid and ubiquinone molecules, and a membrane enzyme.
    Torchut E; Bourdillon C; Laval JM
    Ann N Y Acad Sci; 1995 Mar; 750():112-5. PubMed ID: 7785840
    [No Abstract]   [Full Text] [Related]  

  • 3. Reconstitution of the membrane-bound, ubiquinone-dependent pyruvate oxidase respiratory chain of Escherichia coli with the cytochrome d terminal oxidase.
    Koland JG; Miller MJ; Gennis RB
    Biochemistry; 1984 Jan; 23(3):445-53. PubMed ID: 6367818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of functional electron transfer between membrane biological elements in a two-dimensional lipidic structure at the electrode interface.
    Torchut E; Bourdillon C; Laval JM
    Biosens Bioelectron; 1994; 9(9-10):719-23. PubMed ID: 7695848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrochemical approach of the redox behavior of water insoluble ubiquinones or plastoquinones incorporated in supported phospholipid layers.
    Marchal D; Boireau W; Laval JM; Moiroux J; Bourdillon C
    Biophys J; 1997 Jun; 72(6):2679-87. PubMed ID: 9168043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for membrane binding and catalytic activation of the peripheral membrane enzyme pyruvate oxidase from Escherichia coli.
    Neumann P; Weidner A; Pech A; Stubbs MT; Tittmann K
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17390-5. PubMed ID: 18988747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin labeling of the Escherichia coli NADH ubiquinone oxidoreductase (complex I).
    Pohl T; Spatzal T; Aksoyoglu M; Schleicher E; Rostas AM; Lay H; Glessner U; Boudon C; Hellwig P; Weber S; Friedrich T
    Biochim Biophys Acta; 2010 Dec; 1797(12):1894-900. PubMed ID: 20959113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence of a bound ubiquinone and its function in Escherichia coli membrane-bound quinoprotein glucose dehydrogenase.
    Elias MD; Nakamura S; Migita CT; Miyoshi H; Toyama H; Matsushita K; Adachi O; Yamada M
    J Biol Chem; 2004 Jan; 279(4):3078-83. PubMed ID: 14612441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G
    Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobility and function of coenzyme Q (ubiquinone) in the mitochondrial respiratory chain.
    Lenaz G; Genova ML
    Biochim Biophys Acta; 2009 Jun; 1787(6):563-73. PubMed ID: 19268424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of pyrroloquinoline quinone-dependent D-glucose oxidase respiratory chain of Escherichia coli with cytochrome o oxidase.
    Matsushita K; Nonobe M; Shinagawa E; Adachi O; Ameyama M
    J Bacteriol; 1987 Jan; 169(1):205-9. PubMed ID: 3025170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Coenzyme Q in mitochondrial electron transport.
    Lenaz G; Fato R; Formiggini G; Genova ML
    Mitochondrion; 2007 Jun; 7 Suppl():S8-33. PubMed ID: 17485246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance spectroscopy of bacterial membranes: coenzyme-Q diffusion in a finite diffusion layer.
    Jeuken LJ; Weiss SA; Henderson PJ; Evans SD; Bushby RJ
    Anal Chem; 2008 Dec; 80(23):9084-90. PubMed ID: 19551979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transport in supported and tethered lipid bilayers modified with bioelectroactive molecules.
    Campos R; Kataky R
    J Phys Chem B; 2012 Apr; 116(13):3909-17. PubMed ID: 22380510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization and mobility of coenzyme Q in lipid bilayers and membranes.
    Lenaz G; Fato R; Di Bernardo S; Jarreta D; Costa A; Genova ML; Parenti Castelli G
    Biofactors; 1999; 9(2-4):87-93. PubMed ID: 10416019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization and preferred orientations of ubiquinone homologs in model bilayers.
    Lenaz G; Samorì B; Fato R; Battino M; Parenti Castelli G; Domini I
    Biochem Cell Biol; 1992 Jun; 70(6):504-14. PubMed ID: 1449717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of the lipid-depleted pyruvate oxidase system of Escherichia coli: the palmitic acid effect.
    Kiuchi K; Hager LP
    Arch Biochem Biophys; 1984 Sep; 233(2):776-84. PubMed ID: 6385860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic studies of the lipid-activated pyruvate oxidase flavoprotein of Escherichia coli.
    Mather MW; Gennis RB
    J Biol Chem; 1985 Dec; 260(30):16148-55. PubMed ID: 3905808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical measurement of lateral diffusion coefficients of ubiquinones and plastoquinones of various isoprenoid chain lengths incorporated in model bilayers.
    Marchal D; Boireau W; Laval JM; Moiroux J; Bourdillon C
    Biophys J; 1998 Apr; 74(4):1937-48. PubMed ID: 9545054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction mechanisms of thiamin diphosphate enzymes: redox reactions.
    Tittmann K
    FEBS J; 2009 May; 276(9):2454-68. PubMed ID: 19476487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.