BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11170451)

  • 1. Fragment complementation studies of protein stabilization by hydrophobic core residues.
    Berggård T; Julenius K; Ogard A; Drakenberg T; Linse S
    Biochemistry; 2001 Feb; 40(5):1257-64. PubMed ID: 11170451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green fluorescence induced by EF-hand assembly in a split GFP system.
    Lindman S; Johansson I; Thulin E; Linse S
    Protein Sci; 2009 Jun; 18(6):1221-9. PubMed ID: 19472338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragment complementation of calbindin D28k.
    Berggård T; Thulin E; Akerfeldt KS; Linse S
    Protein Sci; 2000 Nov; 9(11):2094-108. PubMed ID: 11152121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extended hydrophobic core induces EF-hand swapping.
    Håkansson M; Svensson A; Fast J; Linse S
    Protein Sci; 2001 May; 10(5):927-33. PubMed ID: 11316872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-binding properties of wild-type and EF-hand mutants of S100B in the presence and absence of a peptide derived from the C-terminal negative regulatory domain of p53.
    Markowitz J; Rustandi RR; Varney KM; Wilder PT; Udan R; Wu SL; Horrocks WD; Weber DJ
    Biochemistry; 2005 May; 44(19):7305-14. PubMed ID: 15882069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of ligand binding and dimerization of helix-loop-helix peptides: spectroscopic and sedimentation analyses of calbindin D9k EF-hands.
    Julenius K; Robblee J; Thulin E; Finn BE; Fairman R; Linse S
    Proteins; 2002 May; 47(3):323-33. PubMed ID: 11948786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic contributions to the kinetics and thermodynamics of protein assembly.
    Dell'Orco D; Xue WF; Thulin E; Linse S
    Biophys J; 2005 Mar; 88(3):1991-2002. PubMed ID: 15596501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic core substitutions in calbindin D9k: effects on Ca2+ binding and dissociation.
    Kragelund BB; Jönsson M; Bifulco G; Chazin WJ; Nilsson H; Finn BE; Linse S
    Biochemistry; 1998 Jun; 37(25):8926-37. PubMed ID: 9636034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of calbindin D9k into two Ca(2+)-binding subdomains by a combination of mutagenesis and chemical cleavage.
    Finn BE; Kördel J; Thulin E; Sellers P; Forsén S
    FEBS Lett; 1992 Feb; 298(2-3):211-4. PubMed ID: 1544446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The exchanged EF-hands in calmodulin and troponin C chimeras impair the Ca²⁺-induced hydrophobicity and alter the interaction with Orai1: a spectroscopic, thermodynamic and kinetic study.
    Jensen D; Reynolds N; Yang YP; Shakya S; Wang ZQ; Stuehr DJ; Wei CC
    BMC Biochem; 2015 Feb; 16():6. PubMed ID: 25888318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetrical stabilization of bound Ca2+ ions in a cooperative pair of EF-hands through hydrogen bonding of coordinating water molecules in calbindin D(9k).
    Fast J; Håkansson M; Muranyi A; Gippert GP; Thulin E; Evenäs J; Svensson LA; Linse S
    Biochemistry; 2001 Aug; 40(33):9887-95. PubMed ID: 11502182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, binding interface and hydrophobic transitions of Ca2+-loaded calbindin-D(28K).
    Kojetin DJ; Venters RA; Kordys DR; Thompson RJ; Kumar R; Cavanagh J
    Nat Struct Mol Biol; 2006 Jul; 13(7):641-7. PubMed ID: 16799559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation of the pseudo-EF-hand of calbindin D9k into a normal EF-hand. Biophysical studies.
    Johansson C; Brodin P; Grundström T; Forsén S; Drakenberg T
    Eur J Biochem; 1991 Dec; 202(3):1283-90. PubMed ID: 1765083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function relationships in sorcin, a member of the penta EF-hand family. Interaction of sorcin fragments with the ryanodine receptor and an Escherichia coli model system.
    Zamparelli C; Ilari A; Verzili D; Giangiacomo L; Colotti G; Pascarella S; Chiancone E
    Biochemistry; 2000 Feb; 39(4):658-66. PubMed ID: 10651630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of metal-binding sites in rat brain calcium-binding protein.
    Veenstra TD; Gross MD; Hunziker W; Kumar R
    J Biol Chem; 1995 Dec; 270(51):30353-8. PubMed ID: 8530460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-modulated S100 protein-phospholipid interactions. An NMR study of calbindin D9k and DPC.
    Malmendal A; Vander Kooi CW; Nielsen NC; Chazin WJ
    Biochemistry; 2005 May; 44(17):6502-12. PubMed ID: 15850384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain organization of calbindin D28k as determined from the association of six synthetic EF-hand fragments.
    Linse S; Thulin E; Gifford LK; Radzewsky D; Hagan J; Wilk RR; Akerfeldt KS
    Protein Sci; 1997 Nov; 6(11):2385-96. PubMed ID: 9385641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and biochemical characterization of neuronal calretinin domain I-II (residues 1-100). Comparison to homologous calbindin D28k domain I-II (residues 1-93).
    Palczewska M; Groves P; Ambrus A; Kaleta A; Kövér KE; Batta G; Kuźnicki J
    Eur J Biochem; 2001 Dec; 268(23):6229-37. PubMed ID: 11733019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of the conformational change in calbindin-D28k upon calcium binding using differential surface modification analyzed by mass spectrometry.
    Hobbs CA; Deterding LJ; Perera L; Bobay BG; Thompson RJ; Darden TA; Cavanagh J; Tomer KB
    Biochemistry; 2009 Sep; 48(36):8603-14. PubMed ID: 19658395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing fragment complementation by rigid-body docking: in silico reconstitution of calbindin D9k.
    Dell'Orco D; Seeber M; De Benedetti PG; Fanelli F
    J Chem Inf Model; 2005; 45(5):1429-38. PubMed ID: 16180920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.