BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 11170460)

  • 1. Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues.
    Chen-Goodspeed M; Sogorb MA; Wu F; Raushel FM
    Biochemistry; 2001 Feb; 40(5):1332-9. PubMed ID: 11170460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants of the substrate and stereochemical specificity of phosphotriesterase.
    Chen-Goodspeed M; Sogorb MA; Wu F; Hong SB; Raushel FM
    Biochemistry; 2001 Feb; 40(5):1325-31. PubMed ID: 11170459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereochemical constraints on the substrate specificity of phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1999 Jan; 38(4):1159-65. PubMed ID: 9930975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective detoxification of chiral sarin and soman analogues by phosphotriesterase.
    Li WS; Lum KT; Chen-Goodspeed M; Sogorb MA; Raushel FM
    Bioorg Med Chem; 2001 Aug; 9(8):2083-91. PubMed ID: 11504644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereochemical preferences for chiral substrates by the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Chem Biol Interact; 1999 May; 119-120():225-34. PubMed ID: 10421456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents.
    Tsai PC; Fox N; Bigley AN; Harvey SP; Barondeau DP; Raushel FM
    Biochemistry; 2012 Aug; 51(32):6463-75. PubMed ID: 22809162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library.
    Nowlan C; Li Y; Hermann JC; Evans T; Carpenter J; Ghanem E; Shoichet BK; Raushel FM
    J Am Chem Soc; 2006 Dec; 128(49):15892-902. PubMed ID: 17147402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of near active site residues in organophosphorus hydrolase reduces metal stoichiometry and alters substrate specificity.
    diSioudi B; Grimsley JK; Lai K; Wild JR
    Biochemistry; 1999 Mar; 38(10):2866-72. PubMed ID: 10074338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmented hydrolysis of diisopropyl fluorophosphate in engineered mutants of phosphotriesterase.
    Watkins LM; Mahoney HJ; McCulloch JK; Raushel FM
    J Biol Chem; 1997 Oct; 272(41):25596-601. PubMed ID: 9325279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase.
    Aubert SD; Li Y; Raushel FM
    Biochemistry; 2004 May; 43(19):5707-15. PubMed ID: 15134445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combinatorial library for the binuclear metal center of bacterial phosphotriesterase.
    Watkins LM; Kuo JM; Chen-Goodspeed M; Raushel FM
    Proteins; 1997 Dec; 29(4):553-61. PubMed ID: 9408951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural determinants for the stereoselective hydrolysis of chiral substrates by phosphotriesterase.
    Tsai PC; Fan Y; Kim J; Yang L; Almo SC; Gao YQ; Raushel FM
    Biochemistry; 2010 Sep; 49(37):7988-97. PubMed ID: 20695627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereoselective hydrolysis of organophosphate nerve agents by the bacterial phosphotriesterase.
    Tsai PC; Bigley A; Li Y; Ghanem E; Cadieux CL; Kasten SA; Reeves TE; Cerasoli DM; Raushel FM
    Biochemistry; 2010 Sep; 49(37):7978-87. PubMed ID: 20701311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic efficiencies of directly evolved phosphotriesterase variants with structurally different organophosphorus compounds in vitro.
    Goldsmith M; Eckstein S; Ashani Y; Greisen P; Leader H; Sussman JL; Aggarwal N; Ovchinnikov S; Tawfik DS; Baker D; Thiermann H; Worek F
    Arch Toxicol; 2016 Nov; 90(11):2711-2724. PubMed ID: 26612364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operational control of stereoselectivity during the enzymatic hydrolysis of racemic organophosphorus compounds.
    Li Y; Aubert SD; Raushel FM
    J Am Chem Soc; 2003 Jun; 125(25):7526-7. PubMed ID: 12812487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single amino acid substitution, Gly117His, confers phosphotriesterase (organophosphorus acid anhydride hydrolase) activity on human butyrylcholinesterase.
    Lockridge O; Blong RM; Masson P; Froment MT; Millard CB; Broomfield CA
    Biochemistry; 1997 Jan; 36(4):786-95. PubMed ID: 9020776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tryptophan residue(s) as major components of the human serum paraoxonase active site.
    Josse D; Xie W; Masson P; Schopfer LM; Lockridge O
    Chem Biol Interact; 1999 May; 119-120():79-84. PubMed ID: 10421441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of enantioselectivity of chiral organophosphate insecticide hydrolysis by bacterial phosphotriesterase.
    Tsugawa W; Nakamura H; Sode K; Ohuchi S
    Appl Biochem Biotechnol; 2000; 84-86():311-7. PubMed ID: 10849798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphotriesterase: an enzyme in search of its natural substrate.
    Raushel FM; Holden HM
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():51-93. PubMed ID: 10800593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.