These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 11170474)

  • 21. Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics.
    Hwang TC; Koeppe RE; Andersen OS
    Biochemistry; 2003 Nov; 42(46):13646-58. PubMed ID: 14622011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Importance of indole N-H hydrogen bonding in the organization and dynamics of gramicidin channels.
    Chaudhuri A; Haldar S; Sun H; Koeppe RE; Chattopadhyay A
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):419-28. PubMed ID: 24148157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neighboring aliphatic/aromatic side chain interactions between residues 9 and 10 in gramicidin channels.
    Koeppe RE; Hatchett J; Jude AR; Providence LL; Andersen OS; Greathouse DV
    Biochemistry; 2000 Mar; 39(9):2235-42. PubMed ID: 10694389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of phenylalanine substitutions in gramicidin A on the kinetics of channel formation in vesicles and channel structure in SDS micelles.
    Jordan JB; Easton PL; Hinton JF
    Biophys J; 2005 Jan; 88(1):224-34. PubMed ID: 15501932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energetics of gramicidin hybrid channel formation as a test for structural equivalence. Side-chain substitutions in the native sequence.
    Durkin JT; Koeppe RE; Andersen OS
    J Mol Biol; 1990 Jan; 211(1):221-34. PubMed ID: 1688951
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structure, cation binding, transport, and conductance of Gly15-gramicidin A incorporated into SDS micelles and PC/PG vesicles.
    Sham SS; Shobana S; Townsley LE; Jordan JB; Fernandez JQ; Andersen OS; Greathouse DV; Hinton JF
    Biochemistry; 2003 Feb; 42(6):1401-9. PubMed ID: 12578352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gramicidin channels--a solvable membrane "protein" folding problem.
    Andersen OS; Saberwal G; Greathouse DV; Koeppe RE
    Indian J Biochem Biophys; 1996 Oct; 33(5):331-42. PubMed ID: 9029812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel.
    Pomès R; Roux B
    Biophys J; 2002 May; 82(5):2304-16. PubMed ID: 11964221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The conformational preference of gramicidin channels is a function of lipid bilayer thickness.
    Mobashery N; Nielsen C; Andersen OS
    FEBS Lett; 1997 Jul; 412(1):15-20. PubMed ID: 9257681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conversion of a porin-like peptide channel into a gramicidin-like channel by glycine to D-alanine substitutions.
    Thundimadathil J; Roeske RW; Guo L
    Biophys J; 2006 Feb; 90(3):947-55. PubMed ID: 16272445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water permeation through gramicidin A: desformylation and the double helix: a molecular dynamics study.
    de Groot BL; Tieleman DP; Pohl P; Grubmüller H
    Biophys J; 2002 Jun; 82(6):2934-42. PubMed ID: 12023216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinction between dipolar and inductive effects in modulating the conductance of gramicidin channels.
    Koeppe RE; Mazet JL; Andersen OS
    Biochemistry; 1990 Jan; 29(2):512-20. PubMed ID: 1689177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion channels formed by chemical analogs of gramicidin A.
    Bamberg E; Apell HJ; Alpes H; Gross E; Morell JL; Harbaugh JF; Janko K; Läuger P
    Fed Proc; 1978 Oct; 37(12):2633-8. PubMed ID: 81149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association.
    O'Connell AM; Koeppe RE; Andersen OS
    Science; 1990 Nov; 250(4985):1256-9. PubMed ID: 1700867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels.
    Sun H; Greathouse DV; Andersen OS; Koeppe RE
    J Biol Chem; 2008 Aug; 283(32):22233-43. PubMed ID: 18550546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dicarboxylic acid analogs of gramicidin A: dimerization kinetics and single channel properties.
    Apell HJ; Bamberg E; Alpes H
    J Membr Biol; 1979 Nov; 50(3-4):271-85. PubMed ID: 92570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional dynamics of ion channels: modulation of proton movement by conformational switches.
    Yu CH; Pomès R
    J Am Chem Soc; 2003 Nov; 125(45):13890-4. PubMed ID: 14599229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel.
    Pomès R; Roux B
    Biophys J; 1996 Jul; 71(1):19-39. PubMed ID: 8804586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular structure and mechanisms of action of cyclic and linear ion transport antibiotics.
    Duax WL; Griffin JF; Langs DA; Smith GD; Grochulski P; Pletnev V; Ivanov V
    Biopolymers; 1996; 40(1):141-55. PubMed ID: 8541445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrophobic coupling of lipid bilayer energetics to channel function.
    Goforth RL; Chi AK; Greathouse DV; Providence LL; Koeppe RE; Andersen OS
    J Gen Physiol; 2003 May; 121(5):477-93. PubMed ID: 12719487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.