These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11170522)

  • 1. Model complexes of the active site in peptide deformylase: a new family of mononuclear N2S-M(II) complexes.
    Chang S; Karambelkar VV; diTargiani RC; Goldberg DP
    Inorg Chem; 2001 Jan; 40(2):194-5. PubMed ID: 11170522
    [No Abstract]   [Full Text] [Related]  

  • 2. A model complex of a possible intermediate in the mechanism of action of peptide deformylase: first example of an (N2S)zinc(II)-formate complex.
    Chang SC; Sommer RD; Rheingold AL; Goldberg DP
    Chem Commun (Camb); 2001 Nov; (22):2396-7. PubMed ID: 12240093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of nickel-peptide deformylase.
    Dardel F; Ragusa S; Lazennec C; Blanquet S; Meinnel T
    J Mol Biol; 1998 Jul; 280(3):501-13. PubMed ID: 9665852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function relationships within the peptide deformylase family. Evidence for a conserved architecture of the active site involving three conserved motifs and a metal ion.
    Meinnel T; Lazennec C; Villoing S; Blanquet S
    J Mol Biol; 1997 Apr; 267(3):749-61. PubMed ID: 9126850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types: a platform for the structure-based design of antibacterial agents.
    Guilloteau JP; Mathieu M; Giglione C; Blanc V; Dupuy A; Chevrier M; Gil P; Famechon A; Meinnel T; Mikol V
    J Mol Biol; 2002 Jul; 320(5):951-62. PubMed ID: 12126617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the metal ion in formyl-peptide bond hydrolysis by a peptide deformylase active site model.
    Leopoldini M; Russo N; Toscano M
    J Phys Chem B; 2006 Jan; 110(2):1063-72. PubMed ID: 16471643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron center, substrate recognition and mechanism of peptide deformylase.
    Becker A; Schlichting I; Kabsch W; Groche D; Schultz S; Wagner AF
    Nat Struct Biol; 1998 Dec; 5(12):1053-8. PubMed ID: 9846875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of peptide deformylase and identification of the substrate binding site.
    Becker A; Schlichting I; Kabsch W; Schultz S; Wagner AF
    J Biol Chem; 1998 May; 273(19):11413-6. PubMed ID: 9565550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new subclass of the zinc metalloproteases superfamily revealed by the solution structure of peptide deformylase.
    Meinnel T; Blanquet S; Dardel F
    J Mol Biol; 1996 Sep; 262(3):375-86. PubMed ID: 8845003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New monomeric cobalt(II) and zinc(II) complexes of a mixed N,S(alkylthiolate) ligand: model complexes of (His)(His)(Cys) metalloprotein active sites.
    Chang S; Karambelkar VV; Sommer RD; Rheingold AL; Goldberg DP
    Inorg Chem; 2002 Jan; 41(2):239-48. PubMed ID: 11800612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the design of antibiotics targeting peptide deformylase.
    Hao B; Gong W; Rajagopalan PT; Zhou Y; Pei D; Chan MK
    Biochemistry; 1999 Apr; 38(15):4712-9. PubMed ID: 10200158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of the active site zinc ligands of peptide deformylase.
    Meinnel T; Lazennec C; Blanquet S
    J Mol Biol; 1995 Nov; 254(2):175-83. PubMed ID: 7490741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Docking studies of nickel-peptide deformylase (PDF) inhibitors: exploring the new binding pockets.
    Wang Q; Zhang D; Wang J; Cai Z; Xu W
    Biophys Chem; 2006 Jun; 122(1):43-9. PubMed ID: 16545516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure analysis of peptide deformylases from Streptococcus pneumoniae, Staphylococcus aureus, Thermotoga maritima and Pseudomonas aeruginosa: snapshots of the oxygen sensitivity of peptide deformylase.
    Kreusch A; Spraggon G; Lee CC; Klock H; McMullan D; Ng K; Shin T; Vincent J; Warner I; Ericson C; Lesley SA
    J Mol Biol; 2003 Jul; 330(2):309-21. PubMed ID: 12823970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the Escherichia coli peptide deformylase.
    Chan MK; Gong W; Rajagopalan PT; Hao B; Tsai CM; Pei D
    Biochemistry; 1997 Nov; 36(45):13904-9. PubMed ID: 9374869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the catalytic mechanism and metal-ion dependence of peptide deformylase.
    Wu XH; Quan JM; Wu YD
    J Phys Chem B; 2007 Jun; 111(22):6236-44. PubMed ID: 17497768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen-mediated inactivation of peptide deformylase.
    Rajagopalan PT; Pei D
    J Biol Chem; 1998 Aug; 273(35):22305-10. PubMed ID: 9712848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of peptide deformylase activity by metal cations.
    Ragusa S; Blanquet S; Meinnel T
    J Mol Biol; 1998 Jul; 280(3):515-23. PubMed ID: 9665853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C-terminal domain of peptide deformylase is disordered and dispensable for activity.
    Meinnel T; Lazennec C; Dardel F; Schmitter JM; Blanquet S
    FEBS Lett; 1996 Apr; 385(1-2):91-5. PubMed ID: 8641475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species.
    Smith KJ; Petit CM; Aubart K; Smyth M; McManus E; Jones J; Fosberry A; Lewis C; Lonetto M; Christensen SB
    Protein Sci; 2003 Feb; 12(2):349-60. PubMed ID: 12538898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.