These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 11170534)
1. Thermodynamic, kinetic and pH studies on the reactions of NCS-, N3-, and CH3CO2- with Fusarium galactose oxidase. Wright C; Im SC; Twitchett MB; Saysell CG; Sokolowski A; Sykes AG Inorg Chem; 2001 Jan; 40(2):294-300. PubMed ID: 11170534 [TBL] [Abstract][Full Text] [Related]
2. Autoredox interconversion of two galactose oxidase forms GOase(ox) and GOase(semi) with and without dioxygen. Wright C; Sykes AG Inorg Chem; 2001 May; 40(11):2528-33. PubMed ID: 11350230 [TBL] [Abstract][Full Text] [Related]
4. Kinetic Studies on the Redox Interconversion of GOase(semi) and GOase(ox) Forms of Galactose Oxidase with Inorganic Complexes as Redox Partners. Saysell CG; Borman CD; Baron AJ; McPherson MJ; Sykes AG Inorg Chem; 1997 Sep; 36(20):4520-4525. PubMed ID: 11670116 [TBL] [Abstract][Full Text] [Related]
5. Interconversion of Cu(I) and Cu(II) forms of galactose oxidase: comparison of reduction potentials. Wright C; Sykes AG J Inorg Biochem; 2001 Jul; 85(4):237-43. PubMed ID: 11551381 [TBL] [Abstract][Full Text] [Related]
7. Production of Galactose Oxidase Inside the Fusarium fujikuroi Species Complex and Recombinant Expression and Characterization of the Galactose Oxidase GaoA Protein from Fusarium subglutinans. Faria CB; de Castro FF; Martim DB; Abe CAL; Prates KV; de Oliveira MAS; Barbosa-Tessmann IP Mol Biotechnol; 2019 Sep; 61(9):633-649. PubMed ID: 31177409 [TBL] [Abstract][Full Text] [Related]
8. Galactose oxidase as a model for reactivity at a copper superoxide center. Humphreys KJ; Mirica LM; Wang Y; Klinman JP J Am Chem Soc; 2009 Apr; 131(13):4657-63. PubMed ID: 19290629 [TBL] [Abstract][Full Text] [Related]
9. Acid-base catalysis by UDP-galactose 4-epimerase: correlations of kinetically measured acid dissociation constants with thermodynamic values for tyrosine 149. Berger E; Arabshahi A; Wei Y; Schilling JF; Frey PA Biochemistry; 2001 Jun; 40(22):6699-705. PubMed ID: 11380265 [TBL] [Abstract][Full Text] [Related]
10. Kinetic isotope effects as probes of the mechanism of galactose oxidase. Whittaker MM; Ballou DP; Whittaker JW Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494 [TBL] [Abstract][Full Text] [Related]
11. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide. Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946 [TBL] [Abstract][Full Text] [Related]
12. [Various properties of galactose oxidase from Fusarium graminearum IMV-F-1060 immobilized on aminoorganosilochromes]. Kondakova LV; Ianishpol'skiĭ VV; Tertykh VA; Buglova TT; Koroleva OV Ukr Biokhim Zh (1978); 1984; 56(4):394-8. PubMed ID: 6093302 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic properties, catalytic activities and mechanism studies of [(TpPh)Co(X)(CH3OH)m] . nCH3OH: bicarbonate dehydration in the presence of inhibitors. Sun YJ; Zhang LZ; Cheng P; Lin HK; Yan SP; Liao DZ; Jiang ZH; Shen PW Biophys Chem; 2004 May; 109(2):281-93. PubMed ID: 15110946 [TBL] [Abstract][Full Text] [Related]
14. The nature of the intermediates in the reactions of Fe(III)- and Mn(III)-microperoxidase-8 with H(2)O(2): a rapid kinetics study. Primus JL; Grunenwald S; Hagedoorn PL; Albrecht-Gary AM; Mandon D; Veeger C J Am Chem Soc; 2002 Feb; 124(7):1214-21. PubMed ID: 11841289 [TBL] [Abstract][Full Text] [Related]
15. Galactose oxidase from Fusarium oxysporum--expression in E. coli and P. pastoris and biochemical characterization. Paukner R; Staudigl P; Choosri W; Sygmund C; Halada P; Haltrich D; Leitner C PLoS One; 2014; 9(6):e100116. PubMed ID: 24967652 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic, electrochemical, high-pressure kinetic, and mechanistic studies of the formation of oxo Fe(IV)-TAML species in water. Popescu DL; Vrabel M; Brausam A; Madsen P; Lente G; Fabian I; Ryabov AD; van Eldik R; Collins TJ Inorg Chem; 2010 Dec; 49(24):11439-48. PubMed ID: 21086984 [TBL] [Abstract][Full Text] [Related]
17. Kinetic studies on the reduction of the tyrosyl radical of the R2 subunit of E. coli ribonucleotide reductase. Swarts JC; Aquino MA; Han JY; Lam KY; Sykes AG Biochim Biophys Acta; 1995 Mar; 1247(2):215-24. PubMed ID: 7696311 [TBL] [Abstract][Full Text] [Related]
18. Tetrakis- and tris(1-Methyluracil) complexes of Pt(II): formation and properties of a carbon-bonded nucleobase species as well as of heternonuclear derivatives. Holland L; Shen WZ; Micklitz W; Lippert B Inorg Chem; 2007 Dec; 46(26):11356-65. PubMed ID: 18047329 [TBL] [Abstract][Full Text] [Related]
19. Conserved tyrosine-369 in the active site of Escherichia coli copper amine oxidase is not essential. Murray JM; Kurtis CR; Tambyrajah W; Saysell CG; Wilmot CM; Parsons MR; Phillips SE; Knowles PF; McPherson MJ Biochemistry; 2001 Oct; 40(43):12808-18. PubMed ID: 11669617 [TBL] [Abstract][Full Text] [Related]
20. Ligand Substitution Reactions at the Nickel of [Mo(3)NiS(4)(H(2)O)(10)](4+) with Two Water Soluble Phosphines, CO, Br(-), I(-), and NCS(-) and the Inertness of the 1,4,7-Triazacyclononane (L) Complex [Mo(3)(NiL)S(4)(H(2)O)(9)](4+). Saysell DM; Borman CD; Kwak CH; Sykes AG Inorg Chem; 1996 Jan; 35(1):173-178. PubMed ID: 11666181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]