These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 11170560)
1. Near-infrared reflectance spectroscopy enables the fast and accurate prediction of the essential amino acid contents in soy, rapeseed meal, sunflower meal, peas, fishmeal, meat meal products, and poultry meal. Fontaine J; Hörr J; Schirmer B J Agric Food Chem; 2001 Jan; 49(1):57-66. PubMed ID: 11170560 [TBL] [Abstract][Full Text] [Related]
2. Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum. Fontaine J; Schirmer B; Hörr J J Agric Food Chem; 2002 Jul; 50(14):3902-11. PubMed ID: 12083857 [TBL] [Abstract][Full Text] [Related]
3. Near-infrared reflectance spectroscopy for predicting amino acids content in intact processed animal proteins. De la Haba MJ; Garrido-Varo A; Guerrero-Ginel JE; Pérez-Marín DC J Agric Food Chem; 2006 Oct; 54(20):7703-9. PubMed ID: 17002442 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of near-infrared reflectance spectroscopy (NIRS) techniques for total and phytate phosphorus of common poultry feed ingredients. Tahir M; Shim MY; Ward NE; Westerhaus MO; Pesti GM Poult Sci; 2012 Oct; 91(10):2540-7. PubMed ID: 22991540 [TBL] [Abstract][Full Text] [Related]
5. [Apparent digestion coefficients for dry matter, protein and essential amino acids in terrestrial ingredients for Pacific shrimp Litopenaeus vannamei (Decapoda: Penaeidae)]. Terrazas M; Civera R; Ibarra L; Goytortúa E Rev Biol Trop; 2010 Dec; 58(4):1561-76. PubMed ID: 21250486 [TBL] [Abstract][Full Text] [Related]
6. A comparison of ileal digesta and excreta analysis for the determination of amino acid digestibility in food ingredients for poultry. Ravindran V; Hew LI; Ravindran G; Bryden WL Br Poult Sci; 1999 May; 40(2):266-74. PubMed ID: 10465395 [TBL] [Abstract][Full Text] [Related]
7. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review]. Tao LL; Yang XJ; Deng JM; Zhang X Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3002-9. PubMed ID: 24555369 [TBL] [Abstract][Full Text] [Related]
8. [NIRS method for determination of meat and bone meal content in ruminant concentrates]. Yang ZL; Han LJ; Li QF; Liu X Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1278-82. PubMed ID: 18800704 [TBL] [Abstract][Full Text] [Related]
9. Use of artificial neural networks in near-infrared reflectance spectroscopy calibrations for predicting the inclusion percentages of wheat and sunflower meal in compound feedingstuffs. Pérez-Marín D; Garrido-Varo A; Guerrero JE; Gutiérrez-Estrada JC Appl Spectrosc; 2006 Sep; 60(9):1062-9. PubMed ID: 17002832 [TBL] [Abstract][Full Text] [Related]
10. The use of near-infrared reflectance spectroscopy in the prediction of the chemical composition of goose fatty liver. Molette C; Berzaghi P; Zotte AD; Remignon H; Babile R Poult Sci; 2001 Nov; 80(11):1625-9. PubMed ID: 11732680 [TBL] [Abstract][Full Text] [Related]
11. Use of near infrared reflectance spectroscopy to predict phytate phosphorus, total phosphorus, and crude protein of common poultry feed ingredients. Aureli R; Ueberschlag Q; Klein F; Noël C; Guggenbuhl P Poult Sci; 2017 Jan; 96(1):160-168. PubMed ID: 27433015 [TBL] [Abstract][Full Text] [Related]
12. Technical note: comparison of Raman, mid, and near infrared spectroscopy for predicting the amino acid content in animal meals. Qiao Y; van Kempen TA J Anim Sci; 2004 Sep; 82(9):2596-600. PubMed ID: 15446475 [TBL] [Abstract][Full Text] [Related]
13. Use of near infrared spectroscopy for estimating meat chemical composition, quality traits and fatty acid content from cattle fed sunflower or flaxseed. Prieto N; López-Campos O; Aalhus JL; Dugan ME; Juárez M; Uttaro B Meat Sci; 2014 Oct; 98(2):279-88. PubMed ID: 24976561 [TBL] [Abstract][Full Text] [Related]
14. In-Situ Screening of Soybean Quality with a Novel Handheld Near-Infrared Sensor. Aykas DP; Ball C; Sia A; Zhu K; Shotts ML; Schmenk A; Rodriguez-Saona L Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33158206 [TBL] [Abstract][Full Text] [Related]
15. [Near infrared reflectance spectroscopy (NIRS) and its application in the determination for the quality of animal feed and products]. Wang L; Meng QX; Ren LP; Yang JS Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jun; 30(6):1482-7. PubMed ID: 20707134 [TBL] [Abstract][Full Text] [Related]
16. Utility of near-infrared reflectance spectroscopy to predict nutrient composition and in vitro digestibility of total mixed rations. Mentink RL; Hoffman PC; Bauman LM J Dairy Sci; 2006 Jun; 89(6):2320-6. PubMed ID: 16702299 [TBL] [Abstract][Full Text] [Related]
17. Quantification of fatty acids in forages by near-infrared reflectance spectroscopy. Foster JG; Clapham WM; Fedders JM J Agric Food Chem; 2006 May; 54(9):3186-92. PubMed ID: 16637670 [TBL] [Abstract][Full Text] [Related]
18. At line prediction of PUFA and biohydrogenation intermediates in perirenal and subcutaneous fat from cattle fed sunflower or flaxseed by near infrared spectroscopy. Prieto N; Dugan ME; López-Campos O; Aalhus JL; Uttaro B Meat Sci; 2013 May; 94(1):27-33. PubMed ID: 23360682 [TBL] [Abstract][Full Text] [Related]
19. Prediction of protein and amino acid composition and digestibility in individual feedstuffs and mixed diets for pigs using near-infrared spectroscopy. Noel SJ; Jørgensen HJH; Bach Knudsen KE Anim Nutr; 2021 Dec; 7(4):1242-1252. PubMed ID: 34754965 [TBL] [Abstract][Full Text] [Related]
20. Amino Acid contents in raw materials can be precisely analyzed in a global network of near-infrared spectrometers: collaborative trials prove the positive effects of instrument standardization and repeatability files. Fontaine J; Hörr J; Schirmer B J Agric Food Chem; 2004 Feb; 52(4):701-8. PubMed ID: 14969519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]