These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 11170560)
41. Hot topic: application of support vector machine method in prediction of alfalfa protein fractions by near infrared reflectance spectroscopy. Nie Z; Han J; Liu T; Liu X J Dairy Sci; 2008 Jun; 91(6):2361-9. PubMed ID: 18487658 [TBL] [Abstract][Full Text] [Related]
42. Evaluation of the fixed nitrogen-to-protein (N:P) conversion factor (6.25) versus ingredient specific N:P conversion factors in feedstuffs. Sriperm N; Pesti GM; Tillman PB J Sci Food Agric; 2011 May; 91(7):1182-6. PubMed ID: 21305546 [TBL] [Abstract][Full Text] [Related]
43. Near infrared reflectance spectroscopy (NIRS) analyses of nutrient composition and condensed tannin concentrations in carolina willow (Salix caroliniana). Lavin SR; Sullivan KE; Wooley SC; Stone K; Russell S; Valdes EV Zoo Biol; 2015 Nov; 34(6):576-82. PubMed ID: 26315823 [TBL] [Abstract][Full Text] [Related]
44. Determination of fatty acids in broiler breast meat by near-infrared reflectance spectroscopy. Zhou LJ; Wu H; Li JT; Wang ZY; Zhang LY Meat Sci; 2012 Mar; 90(3):658-64. PubMed ID: 22085539 [TBL] [Abstract][Full Text] [Related]
45. Automated methods for determination of fat and moisture in meat and poultry products: collaborative study. Bostian ML; Fish DL; Webb NB; Arey JJ J Assoc Off Anal Chem; 1985; 68(5):876-80. PubMed ID: 4055632 [TBL] [Abstract][Full Text] [Related]
46. Implementation of LOCAL algorithm with near-infrared spectroscopy for compliance assurance in compound feedingstuffs. Pérez-Marín D; Garrido-Varo A; Guerrero JE Appl Spectrosc; 2005 Jan; 59(1):69-77. PubMed ID: 15720740 [TBL] [Abstract][Full Text] [Related]
47. Short Communication: The potential of portable near infrared spectroscopy for assuring quality and authenticity in the food chain, using Iberian hams as an example. Piotrowski C; Garcia R; Garrido-Varo A; Pérez-Marín D; Riccioli C; Fearn T Animal; 2019 Dec; 13(12):3018-3021. PubMed ID: 31452496 [TBL] [Abstract][Full Text] [Related]
48. Prediction of sodium content in commercial processed meat products using near infrared spectroscopy. De Marchi M; Manuelian CL; Ton S; Manfrin D; Meneghesso M; Cassandro M; Penasa M Meat Sci; 2017 Mar; 125():61-65. PubMed ID: 27888774 [TBL] [Abstract][Full Text] [Related]
49. Determining the contents of protein and amino acids in peanuts using near-infrared reflectance spectroscopy. Wang L; Wang Q; Liu H; Liu L; Du Y J Sci Food Agric; 2013 Jan; 93(1):118-24. PubMed ID: 22689204 [TBL] [Abstract][Full Text] [Related]
50. Composition of amino acids in feed ingredients for animal diets. Li X; Rezaei R; Li P; Wu G Amino Acids; 2011 Apr; 40(4):1159-68. PubMed ID: 20842395 [TBL] [Abstract][Full Text] [Related]
51. Variation in amino acid digestibility of rapeseed meal studied in caecectomised laying hens and relationship with chemical constituents. Rezvani M; Kluth H; Bulang M; Rodehutscord M Br Poult Sci; 2012; 53(5):665-74. PubMed ID: 23281762 [TBL] [Abstract][Full Text] [Related]
52. Raw and rendered animal by-products as ingredients in dog diets. Murray SM; Patil AR; Fahey GC; Merchen NR; Hughes DM J Anim Sci; 1997 Sep; 75(9):2497-505. PubMed ID: 9303468 [TBL] [Abstract][Full Text] [Related]
53. Nutritional improvement of Lobia (Phaseolus vulgaris) by supplementation with poultry, mutton and beef meat. Bhatty N; Gilani AH; Nagra SA Int J Food Sci Nutr; 2001 Nov; 52(6):521-6. PubMed ID: 11570019 [TBL] [Abstract][Full Text] [Related]
54. Effective rumen degradation of dry matter, crude protein and neutral detergent fibre in forage determined by near infrared reflectance spectroscopy. Ohlsson C; Houmøller LP; Weisbjerg MR; Lund P; Hvelplund T J Anim Physiol Anim Nutr (Berl); 2007 Dec; 91(11-12):498-507. PubMed ID: 17988354 [TBL] [Abstract][Full Text] [Related]
55. [Calibration Transfer of Near Infrared Spectrometric Models for Crude Protein of Protein Feed Materials]. Ding K; Zhang YJ; Sheng GH; Yu XL; Yang ZL; Liu X Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1334-9. PubMed ID: 30001001 [TBL] [Abstract][Full Text] [Related]
56. Analysis of moisture, oil, and fatty acid composition of olives by near-infrared spectroscopy: development and validation calibration models. Saha U; Jackson D J Sci Food Agric; 2018 Mar; 98(5):1821-1831. PubMed ID: 28873227 [TBL] [Abstract][Full Text] [Related]
57. Genetic analysis of beef fatty acid composition predicted by near-infrared spectroscopy. Cecchinato A; De Marchi M; Penasa M; Casellas J; Schiavon S; Bittante G J Anim Sci; 2012 Feb; 90(2):429-38. PubMed ID: 21948610 [TBL] [Abstract][Full Text] [Related]
58. Prediction of lamb meat fatty acid composition using near-infrared reflectance spectroscopy (NIRS). Guy F; Prache S; Thomas A; Bauchart D; Andueza D Food Chem; 2011 Aug; 127(3):1280-6. PubMed ID: 25214127 [TBL] [Abstract][Full Text] [Related]
59. Development of a near-infrared spectroscopy method (NIRS) for fast analysis of total, indolic, aliphatic and individual glucosinolates in new bred open pollinating genotypes of broccoli (Brassica oleracea convar. botrytis var. italica). Sahamishirazi S; Zikeli S; Fleck M; Claupein W; Graeff-Hoenninger S Food Chem; 2017 Oct; 232():272-277. PubMed ID: 28490075 [TBL] [Abstract][Full Text] [Related]
60. Near-infrared reflectance spectroscopy (NIRS) for protein, tryptophan, and lysine evaluation in quality protein maize (QPM) breeding programs. Rosales A; Galicia L; Oviedo E; Islas C; Palacios-Rojas N J Agric Food Chem; 2011 Oct; 59(20):10781-6. PubMed ID: 21919454 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]