These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11170598)

  • 1. Gamma-linolenic acid and tocopherol contents in the seed oil of 47 accessions from several Ribes species.
    Goffman FD; Galletti S
    J Agric Food Chem; 2001 Jan; 49(1):349-54. PubMed ID: 11170598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribes taxa: A promising source of γ-linolenic acid-rich functional oils.
    Lyashenko S; González-Fernández MJ; Gómez-Mercado F; Yunusova S; Denisenko O; Guil-Guerrero JL
    Food Chem; 2019 Dec; 301():125309. PubMed ID: 31398673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Canadian black currant (Ribes nigrum L.) seed oils and residues.
    Bakowska-Barczak AM; Schieber A; Kolodziejczyk P
    J Agric Food Chem; 2009 Dec; 57(24):11528-36. PubMed ID: 19928765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triacylglycerol biosynthesis in developing Ribes nigrum and Ribes rubrum seeds from gene expression to oil composition.
    Vuorinen AL; Kalpio M; Linderborg KM; Hoppula KB; Karhu ST; Yang B; Kallio HP
    Food Chem; 2016 Apr; 196():976-87. PubMed ID: 26593580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Composition and Antioxidant Capacity of Brazilian Passiflora Seed Oils.
    de Santana FC; Shinagawa FB; Araujo Eda S; Costa AM; Mancini-Filho J
    J Food Sci; 2015 Dec; 80(12):C2647-54. PubMed ID: 26512548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid content and juice characteristics in black currant (Ribes nigrum L.) genotypes.
    Del Castillo ML; Dobson G; Brennan R; Gordon S
    J Agric Food Chem; 2004 Feb; 52(4):948-52. PubMed ID: 14969555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars.
    Stevenson DG; Eller FJ; Wang L; Jane JL; Wang T; Inglett GE
    J Agric Food Chem; 2007 May; 55(10):4005-13. PubMed ID: 17439238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma-linolenic Acid from Fifty-seven Ribes Species and Cultivars.
    Golovenko E; Lyashenko S; Akimova S; Mitina L; Mulenkova E; Belarbi EH; Guil-Guerrero JL
    Plant Foods Hum Nutr; 2021 Sep; 76(3):385-393. PubMed ID: 34328593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Composition Analysis, Sensory, and Feasibility Study of Tree Peony Seed.
    Mao Y; Han J; Tian F; Tang X; Hu Y; Guan Y
    J Food Sci; 2017 Feb; 82(2):553-561. PubMed ID: 28135396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some rape/canola seed oils: fatty acid composition and tocopherols.
    Matthaus B; Özcan MM; Al Juhaimi F
    Z Naturforsch C J Biosci; 2016 Mar; 71(3-4):73-7. PubMed ID: 27023318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a New α-Linolenic Acid-Rich Oil: Eucommia ulmoides Seed Oil.
    Zhang ZS; Liu YL; Che LM
    J Food Sci; 2018 Mar; 83(3):617-623. PubMed ID: 29355957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of gamma-linolenic acid in compositae: a study of Youngia tenuicaulis seed oil.
    Tsevegsüren N; Aitzetmüller K; Vosmann K
    Lipids; 1999 May; 34(5):525-9. PubMed ID: 10380126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of gamma-linolenic acid in Ribes seed.
    Traitler H; Winter H; Richli U; Ingenbleek Y
    Lipids; 1984 Dec; 19(12):923-8. PubMed ID: 6098796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils.
    Parry J; Su L; Luther M; Zhou K; Yurawecz MP; Whittaker P; Yu L
    J Agric Food Chem; 2005 Feb; 53(3):566-73. PubMed ID: 15686403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties (Vitis spp.).
    Sabir A; Unver A; Kara Z
    J Sci Food Agric; 2012 Jul; 92(9):1982-7. PubMed ID: 22271548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty Acid and Tocopherol Composition of Pomace and Seed Oil from Five Grape Varieties Southern Spain.
    Carmona-Jiménez Y; Igartuburu JM; Guillén-Sánchez DA; García-Moreno MV
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemotaxonomic Screening of Seed Oils from the Family Saxifragaceae and Comparison with Data on Seed Oils from Grossulariaceae Obtained from Literature.
    Matthäus B; Otgonbayar C
    Chem Biodivers; 2016 Nov; 13(11):1511-1520. PubMed ID: 27461155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mertensia (Boraginaceae) seeds are new sources of γ-linolenic acid and minor functional compounds.
    Lyashenko S; González-Fernández MJ; Borisova S; Belarbi EH; Guil-Guerrero JL
    Food Chem; 2021 Jul; 350():128635. PubMed ID: 33317855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between fatty acid profile and vitamin E content in maize hybrids (Zea mays L.).
    Goffman FD; Böhme T
    J Agric Food Chem; 2001 Oct; 49(10):4990-4. PubMed ID: 11600056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential oil yield, fatty acid composition, and oxidation stability of the hempseed oil from four Cannabis sativa L. cultivars.
    Da Porto C; Decorti D; Natolino A
    J Diet Suppl; 2015 Mar; 12(1):1-10. PubMed ID: 24552275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.