BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 11170621)

  • 1. Impact of competitive fungi on Trichothecene production by Fusarium graminearum.
    Cooney JM; Lauren DR; di Menna ME
    J Agric Food Chem; 2001 Jan; 49(1):522-6. PubMed ID: 11170621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of trichothecene and non-trichothecene mycotoxins by Fusarium species isolated from maize in Minnesota.
    Abbas HK; Mirocha CJ; Kommedahl T; Vesonder RF; Golinski P
    Mycopathologia; 1989 Oct; 108(1):55-8. PubMed ID: 2615802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of mycotoxins by selected Fusarium graminearum and F. crookwellense isolates.
    Sydenham EW; Marasas WF; Thiel PG; Shephard GS; Nieuwenhuis JJ
    Food Addit Contam; 1991; 8(1):31-41. PubMed ID: 1826664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of environmental factors on the biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops.
    Llorens A; Mateo R; Hinojo MJ; Valle-Algarra FM; Jiménez M
    Int J Food Microbiol; 2004 Jul; 94(1):43-54. PubMed ID: 15172484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycotoxin production by Fusarium species isolated from New Zealand maize fields.
    Hussein HM; Baxter M; Andrew IG; Franich RA
    Mycopathologia; 1991 Jan; 113(1):35-40. PubMed ID: 1826540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trichothecene mycotoxins associated with potato dry rot caused by Fusarium graminearum.
    Delgado JA; Schwarz PB; Gillespie J; Rivera-Varas VV; Secor GA
    Phytopathology; 2010 Mar; 100(3):290-6. PubMed ID: 20128703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of trichothecene mycotoxins by Fusarium graminearum and Fusarium culmorum on barley and wheat.
    Mirocha CJ; Xie W; Xu Y; Wilcoxson RD; Woodward RP; Etebarian RH; Behele G
    Mycopathologia; 1994 Oct; 128(1):19-23. PubMed ID: 7708088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests.
    Kuhnem PR; Del Ponte EM; Dong Y; Bergstrom GC
    Phytopathology; 2015 Apr; 105(4):441-8. PubMed ID: 25338173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain.
    Hope R; Aldred D; Magan N
    Lett Appl Microbiol; 2005; 40(4):295-300. PubMed ID: 15752221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxigenic potential of Fusarium graminearum isolated from maize of northwest Argentina.
    Sampietro DA; Apud GR; Belizán MM; Vattuone MA; Catalán CA
    Braz J Microbiol; 2013; 44(2):417-22. PubMed ID: 24294230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trichothecene genotypes and production profiles of Fusarium graminearum isolates obtained from barley cultivated in Argentina.
    Castañares E; Albuquerque DR; Dinolfo MI; Pinto VF; Patriarca A; Stenglein SA
    Int J Food Microbiol; 2014 Jun; 179():57-63. PubMed ID: 24727383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deoxynivalenol and other selected Fusarium toxins in Swedish oats--occurrence and correlation to specific Fusarium species.
    Fredlund E; Gidlund A; Sulyok M; Börjesson T; Krska R; Olsen M; Lindblad M
    Int J Food Microbiol; 2013 Oct; 167(2):276-83. PubMed ID: 23962918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificities of Fusarium biosynthetic enzymes explain the genetic basis of a mixed chemotype producing both deoxynivalenol and nivalenol-type trichothecenes.
    Maeda K; Tanaka Y; Matsuyama M; Sato M; Sadamatsu K; Suzuki T; Matsui K; Nakajima Y; Tokai T; Kanamaru K; Ohsato S; Kobayashi T; Fujimura M; Nishiuchi T; Takahashi-Ando N; Kimura M
    Int J Food Microbiol; 2020 May; 320():108532. PubMed ID: 32004825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycotoxigenic Fusarium and deoxynivalenol production repress chitinase gene expression in the biocontrol agent Trichoderma atroviride P1.
    Lutz MP; Feichtinger G; Défago G; Duffy B
    Appl Environ Microbiol; 2003 Jun; 69(6):3077-84. PubMed ID: 12788701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic relationships, carbendazim sensitivity and mycotoxin production of the Fusarium graminearum populations from maize, wheat and rice in eastern China.
    Qiu J; Shi J
    Toxins (Basel); 2014 Aug; 6(8):2291-309. PubMed ID: 25093387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detoxification of Deoxynivalenol via Glycosylation Represents Novel Insights on Antagonistic Activities of Trichoderma when Confronted with Fusarium graminearum.
    Tian Y; Tan Y; Liu N; Yan Z; Liao Y; Chen J; de Saeger S; Yang H; Zhang Q; Wu A
    Toxins (Basel); 2016 Nov; 8(11):. PubMed ID: 27854265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microsatellite based method for quantification of fungi in decomposing plant material elucidates the role of Fusarium graminearum DON production in the saprophytic competition with Trichoderma atroviride in maize tissue microcosms.
    Naef A; Senatore M; Défago G
    FEMS Microbiol Ecol; 2006 Feb; 55(2):211-20. PubMed ID: 16420629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence and toxicity of Fusarium subglutinans from Peruvian maize.
    Logrieco A; Moretti A; Altomare C; Bottalico A; Carbonell Torres E
    Mycopathologia; 1993 Jun; 122(3):185-90. PubMed ID: 8413501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trichothecene genotypes and chemotypes in Fusarium graminearum complex strains isolated from maize fields of northwest Argentina.
    Sampietro DA; Ficoseco ME; Jimenez CM; Vattuone MA; Catalán CA
    Int J Food Microbiol; 2012 Feb; 153(1-2):229-33. PubMed ID: 22119268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation.
    Tarazona A; Gómez JV; Mateo EM; Jiménez M; Mateo F
    Int J Food Microbiol; 2019 Oct; 306():108259. PubMed ID: 31349113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.