BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 11171162)

  • 1. The role of plastidial transporters in developing embryos of oilseed rape (Brassica napus L.) for fatty acid synthesis.
    Kubis SE; Rawsthorne S
    Biochem Soc Trans; 2000 Dec; 28(6):665-6. PubMed ID: 11171162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The import of phosphoenolpyruvate by plastids from developing embryos of oilseed rape, Brassica napus (L.), and its potential as a substrate for fatty acid synthesis.
    Kubis SE; Pike MJ; Everett CJ; Hill LM; Rawsthorne S
    J Exp Bot; 2004 Jul; 55(402):1455-62. PubMed ID: 15208349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.).
    Hutchings D; Rawsthorne S; Emes MJ
    J Exp Bot; 2005 Feb; 56(412):577-85. PubMed ID: 15611146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Export of acyl chains from plastids isolated from embryos of Brassica napus (L.).
    Johnson PE; Rawsthorne S; Hills MJ
    Planta; 2002 Jul; 215(3):515-7. PubMed ID: 12111236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryos.
    Eastmond PJ; Rawsthorne S
    Plant Physiol; 2000 Mar; 122(3):767-74. PubMed ID: 10712540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid synthesis by isolated leucoplasts from developing Brassica seeds: role of glycolytic intermediates as the source of carbon and energy.
    Gupta R; Singh R
    Indian J Biochem Biophys; 1996 Dec; 33(6):478-83. PubMed ID: 9219433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the glucose-6-phosphate transporter in oilseed rape (Brassica napus L.) plastids by acyl-CoA thioesters reduces fatty acid synthesis.
    Fox SR; Hill LM; Rawsthorne S; Hills MJ
    Biochem J; 2000 Dec; 352 Pt 2(Pt 2):525-32. PubMed ID: 11085947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of storage synthesis in developing Brassica napus L. (oilseed rape) embryos: flux variability analysis in relation to ¹³C metabolic flux analysis.
    Hay J; Schwender J
    Plant J; 2011 Aug; 67(3):513-25. PubMed ID: 21501261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotin carboxyl carrier protein isoforms in Brassicaceae oilseeds.
    Thelen JJ; Mekhedov S; Ohlrogge JB
    Biochem Soc Trans; 2000 Dec; 28(6):595-8. PubMed ID: 11171138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and proteomic characterization of plastids from Brassica napus developing embryos.
    Jain R; Katavic V; Agrawal GK; Guzov VM; Thelen JJ
    Proteomics; 2008 Aug; 8(16):3397-405. PubMed ID: 18690651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic comparison of plastids from developing embryos and leaves of Brassica napus.
    Demartini DR; Jain R; Agrawal G; Thelen JJ
    J Proteome Res; 2011 May; 10(5):2226-37. PubMed ID: 21417358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition by long-chain acyl-CoAs of glucose 6-phosphate metabolism in plastids isolated from developing embryos of oilseed rape (Brassica napus L.).
    Johnson PE; Fox SR; Hills MJ; Rawsthorne S
    Biochem J; 2000 May; 348 Pt 1(Pt 1):145-50. PubMed ID: 10794725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic network reconstruction and flux variability analysis of storage synthesis in developing oilseed rape (Brassica napus L.) embryos.
    Hay J; Schwender J
    Plant J; 2011 Aug; 67(3):526-41. PubMed ID: 21501263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds.
    Schwender J; Goffman F; Ohlrogge JB; Shachar-Hill Y
    Nature; 2004 Dec; 432(7018):779-82. PubMed ID: 15592419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of acyl-CoAs and acyl-CoA-binding protein in regulation of carbon supply for fatty acid biosynthesis.
    Fox SR; Rawsthorne S; Hills MJ
    Biochem Soc Trans; 2000 Dec; 28(6):672-4. PubMed ID: 11171165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymes of glycolytic and pentose phosphate pathways in cytosolic and leucoplastic fractions of developing seeds of Brassica campestris.
    Gupta R; Singh R
    Indian J Biochem Biophys; 1997 Jun; 34(3):288-95. PubMed ID: 9425748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns.
    Rossato L; Lainé P; Ourry A
    J Exp Bot; 2001 Aug; 52(361):1655-63. PubMed ID: 11479330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Storage oil breakdown during embryo development of Brassica napus (L.).
    Chia TY; Pike MJ; Rawsthorne S
    J Exp Bot; 2005 May; 56(415):1285-96. PubMed ID: 15767324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds.
    Roesler K; Shintani D; Savage L; Boddupalli S; Ohlrogge J
    Plant Physiol; 1997 Jan; 113(1):75-81. PubMed ID: 9008389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon supply for storage-product synthesis in developing seeds of oilseed rape.
    Hill LM; Rawsthorne S
    Biochem Soc Trans; 2000 Dec; 28(6):667-9. PubMed ID: 11171163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.