BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11171164)

  • 1. Metabolic control analysis of de novo sunflower fatty acid biosynthesis.
    Martínez-Force E; Garcés R
    Biochem Soc Trans; 2000 Dec; 28(6):669-71. PubMed ID: 11171164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase of the stearic acid content in high-oleic sunflower (Helianthus annuus) seeds.
    Pleite R; Martínez-Force E; Garcés R
    J Agric Food Chem; 2006 Dec; 54(25):9383-8. PubMed ID: 17147422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitors of fatty acid biosynthesis in sunflower seeds.
    Pleite R; Martínez-Force E; Garcés R
    J Plant Physiol; 2006 Sep; 163(9):885-94. PubMed ID: 16500723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds.
    Martínez-Force E; Cantisán S; Serrano-Vega MJ; Garcés R
    Planta; 2000 Oct; 211(5):673-8. PubMed ID: 11089680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and expression of fatty acids biosynthesis key enzymes from sunflower (Helianthus annuus L.) in Escherichia coli.
    Serrano-Vega MJ; Venegas-Calerón M; Garcés R; Martínez-Force E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Mar; 786(1-2):221-8. PubMed ID: 12651018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities.
    Aznar-Moreno JA; Venegas-Calerón M; Martínez-Force E; Garcés R; Salas JJ
    Planta; 2016 Aug; 244(2):479-90. PubMed ID: 27095109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase.
    Jusoh M; Loh SH; Chuah TS; Aziz A; Cha TS
    Phytochemistry; 2015 Mar; 111():65-71. PubMed ID: 25583439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What limits production of unusual monoenoic fatty acids in transgenic plants?
    Suh MC; Schultz DJ; Ohlrogge JB
    Planta; 2002 Aug; 215(4):584-95. PubMed ID: 12172841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein interactions of fatty acid synthase II.
    Honeyman G; Fawcett T
    Biochem Soc Trans; 2000 Dec; 28(6):615-6. PubMed ID: 11171144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isoforms of acyl carrier protein involved in seed-specific fatty acid synthesis.
    Suh MC; Schultz DJ; Ohlrogge JB
    Plant J; 1999 Mar; 17(6):679-88. PubMed ID: 10366274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-related non-homogeneous fatty acid desaturation in sunflower (Helianthus annuus L.) seeds.
    Fernández-Moya V; Martínez-Force E; Garcés R
    Planta; 2003 Mar; 216(5):834-40. PubMed ID: 12624771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of the fatty acid composition in Arabidopsis and maize seeds using a stearoyl-acyl carrier protein desaturase-1 (ZmSAD1) gene.
    Du H; Huang M; Hu J; Li J
    BMC Plant Biol; 2016 Jun; 16(1):137. PubMed ID: 27297560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.
    González-Thuillier I; Venegas-Calerón M; Sánchez R; Garcés R; von Wettstein-Knowles P; Martínez-Force E
    Planta; 2016 Feb; 243(2):397-410. PubMed ID: 26433735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of a high-palmitoleic acid Helianthus annuus mutant.
    Salas JJ; Martínez-Force E; Garcés R
    Plant Physiol Biochem; 2004 May; 42(5):373-81. PubMed ID: 15191739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2 encoding β-ketoacyl-ACP synthase II (KASII).
    Liu Q; Wu M; Zhang B; Shrestha P; Petrie J; Green AG; Singh SP
    Plant Biotechnol J; 2017 Jan; 15(1):132-143. PubMed ID: 27381745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional analyses of a saturated acyl ACP thioesterase, type B from immature seed tissue of Jatropha curcas.
    Dani KG; Hatti KS; Ravikumar P; Kush A
    Plant Biol (Stuttg); 2011 May; 13(3):453-61. PubMed ID: 21489096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Very long chain fatty acid synthesis in sunflower kernels.
    Salas JJ; Martínez-Force E; Garcés R
    J Agric Food Chem; 2005 Apr; 53(7):2710-6. PubMed ID: 15796615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deposition of stearate-oleate rich seed fat in Mangifera indica is mediated by a FatA type acyl-ACP thioesterase.
    Bhattacharjee A; Ghosh SK; Neogi K; Aich A; Willard B; Kinter M; Sen SK; Ghosh D; Ghosh S
    Phytochemistry; 2011 Feb; 72(2-3):166-77. PubMed ID: 21130480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol.
    Lee S; Park S; Park C; Pack SP; Lee J
    Enzyme Microb Technol; 2014 Dec; 67():8-16. PubMed ID: 25442943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-ketoacyl-acyl carrier protein synthase IV: a key enzyme for regulation of medium-chain fatty acid synthesis in Cuphea lanceolata seeds.
    Schütt BS; Abbadi A; Loddenkötter B; Brummel M; Spener F
    Planta; 2002 Sep; 215(5):847-54. PubMed ID: 12244451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.