These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 11171216)
1. Effect of monogalactosyldiacylglycerol and other thylakoid lipids on violaxanthin de-epoxidation in liposomes. Latowski D; Kostecka A; Strzałka K Biochem Soc Trans; 2000 Dec; 28(6):810-2. PubMed ID: 11171216 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. Latowski D; Kruk J; Burda K; Skrzynecka-Jaskier M; Kostecka-Gugała A; Strzałka K Eur J Biochem; 2002 Sep; 269(18):4656-65. PubMed ID: 12230579 [TBL] [Abstract][Full Text] [Related]
3. Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Goss R; Lohr M; Latowski D; Grzyb J; Vieler A; Wilhelm C; Strzalka K Biochemistry; 2005 Mar; 44(10):4028-36. PubMed ID: 15751979 [TBL] [Abstract][Full Text] [Related]
4. Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Latowski D; Akerlund HE; Strzałka K Biochemistry; 2004 Apr; 43(15):4417-20. PubMed ID: 15078086 [TBL] [Abstract][Full Text] [Related]
5. Functional roles of the major chloroplast lipids in the violaxanthin cycle. Yamamoto HY Planta; 2006 Aug; 224(3):719-24. PubMed ID: 16532316 [TBL] [Abstract][Full Text] [Related]
6. Comparison of violaxanthin de-epoxidation from the stroma and lumen sides of isolated thylakoid membranes from Arabidopsis: implications for the mechanism of de-epoxidation. Macko S; Wehner A; Jahns P Planta; 2002 Dec; 216(2):309-14. PubMed ID: 12447545 [TBL] [Abstract][Full Text] [Related]
7. The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII). Schaller S; Latowski D; Jemioła-Rzemińska M; Wilhelm C; Strzałka K; Goss R Biochim Biophys Acta; 2010 Mar; 1797(3):414-24. PubMed ID: 20035710 [TBL] [Abstract][Full Text] [Related]
8. A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophyll cycle enzyme violaxanthin de-epoxidase. Latowski D; Burda K; Strzałka K J Theor Biol; 2000 Oct; 206(4):507-14. PubMed ID: 11013111 [TBL] [Abstract][Full Text] [Related]
9. Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in-vitro de-epoxidation in monogalactosyldiacylglycerol micelles. Hieber AD; Kawabata O; Yamamoto HY Plant Cell Physiol; 2004 Jan; 45(1):92-102. PubMed ID: 14749490 [TBL] [Abstract][Full Text] [Related]
10. Zeaxanthin epoxidation - an in vitro approach. Kuczyńska P; Latowski D; Niczyporuk S; Olchawa-Pajor M; Jahns P; Gruszecki WI; Strzałka K Acta Biochim Pol; 2012; 59(1):105-7. PubMed ID: 22428135 [TBL] [Abstract][Full Text] [Related]
11. Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane. Goss R; Latowski D; Grzyb J; Vieler A; Lohr M; Wilhelm C; Strzalka K Biochim Biophys Acta; 2007 Jan; 1768(1):67-75. PubMed ID: 16843433 [TBL] [Abstract][Full Text] [Related]
12. Influence of the compatible solute sucrose on thylakoid membrane organization and violaxanthin de-epoxidation. Goss R; Schwarz C; Matzner M; Wilhelm C Planta; 2021 Aug; 254(3):52. PubMed ID: 34392410 [TBL] [Abstract][Full Text] [Related]
13. Direct isolation of a functional violaxanthin cycle domain from thylakoid membranes of higher plants. Goss R; Greifenhagen A; Bergner J; Volke D; Hoffmann R; Wilhelm C; Schaller-Laudel S Planta; 2017 Apr; 245(4):793-806. PubMed ID: 28025675 [TBL] [Abstract][Full Text] [Related]
14. Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light. Bugos RC; Chang SH; Yamamoto HY Plant Physiol; 1999 Sep; 121(1):207-14. PubMed ID: 10482676 [TBL] [Abstract][Full Text] [Related]
15. Insights into the binding mechanism of ascorbic acid and violaxanthin with violaxanthin de-epoxidase (VDE) and chlorophycean violaxanthin de-epoxidase (CVDE) enzymes. Biswal S; Gupta PSS; Panda SK; Bhat HR; Rana MK Photosynth Res; 2023 Jun; 156(3):337-354. PubMed ID: 36847893 [TBL] [Abstract][Full Text] [Related]
16. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Müller-Moulé P; Conklin PL; Niyogi KK Plant Physiol; 2002 Mar; 128(3):970-7. PubMed ID: 11891252 [TBL] [Abstract][Full Text] [Related]
17. The lipid dependence of diadinoxanthin de-epoxidation presents new evidence for a macrodomain organization of the diatom thylakoid membrane. Goss R; Nerlich J; Lepetit B; Schaller S; Vieler A; Wilhelm C J Plant Physiol; 2009 Nov; 166(17):1839-54. PubMed ID: 19604599 [TBL] [Abstract][Full Text] [Related]
18. The importance of grana stacking for xanthophyll cycle-dependent NPQ in the thylakoid membranes of higher plants. Goss R; Oroszi S; Wilhelm C Physiol Plant; 2007 Nov; 131(3):496-507. PubMed ID: 18251887 [TBL] [Abstract][Full Text] [Related]
19. The de-epoxidase and epoxidase reactions of Mantoniella squamata (Prasinophyceae) exhibit different substrate-specific reaction kinetics compared to spinach. Frommolt R; Goss R; Wilhelm C Planta; 2001 Jul; 213(3):446-56. PubMed ID: 11506368 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of violaxanthin de-epoxidase: properties of C-terminal deletions on activity and pH-dependent lipid binding. Hieber AD; Bugos RC; Verhoeven AS; Yamamoto HY Planta; 2002 Jan; 214(3):476-83. PubMed ID: 11855651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]