These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 11171235)
61. MicroRNAome Profile of Li P; Tian Z; Zhang Q; Zhang Y; Wang M; Fang X; Shi W; Cai X Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871196 [TBL] [Abstract][Full Text] [Related]
62. JAV1 controls jasmonate-regulated plant defense. Hu P; Zhou W; Cheng Z; Fan M; Wang L; Xie D Mol Cell; 2013 May; 50(4):504-15. PubMed ID: 23706819 [TBL] [Abstract][Full Text] [Related]
63. Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants. Wang Z; Cao G; Wang X; Miao J; Liu X; Chen Z; Qu LJ; Gu H Plant Cell Rep; 2008 Jan; 27(1):125-35. PubMed ID: 17786451 [TBL] [Abstract][Full Text] [Related]
64. Reversible protein phosphorylation regulates jasmonic acid-dependent and -independent wound signal transduction pathways in Arabidopsis thaliana. Rojo E; Titarenko E; León J; Berger S; Vancanneyt G; Sánchez-Serrano JJ Plant J; 1998 Jan; 13(2):153-65. PubMed ID: 9680973 [TBL] [Abstract][Full Text] [Related]
65. [Expression profile analysis of Peptide5 and Peptide6 in Arabidopsis]. Jiang XB; Yu DQ Yi Chuan; 2008 Dec; 30(12):1615-20. PubMed ID: 19073579 [TBL] [Abstract][Full Text] [Related]
66. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation. Rossato L; MacDuff JH; Laine P; Le Deunff E; Ourry A J Exp Bot; 2002 May; 53(371):1131-41. PubMed ID: 11971924 [TBL] [Abstract][Full Text] [Related]
67. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Mao P; Duan M; Wei C; Li Y Plant Cell Physiol; 2007 Jun; 48(6):833-42. PubMed ID: 17510065 [TBL] [Abstract][Full Text] [Related]
68. Methyl jasmonate induced expression of the tobacco putrescine N -methyltransferase genes requires both G-box and GCC-motif elements. Xu B; Timko M Plant Mol Biol; 2004 Jul; 55(5):743-61. PubMed ID: 15604714 [TBL] [Abstract][Full Text] [Related]
69. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Lorenzo O; Piqueras R; Sánchez-Serrano JJ; Solano R Plant Cell; 2003 Jan; 15(1):165-78. PubMed ID: 12509529 [TBL] [Abstract][Full Text] [Related]
70. Transcriptome changes in Polygonum multiflorum Thunb. roots induced by methyl jasmonate. Liu HC; Wu W; Hou K; Chen JW; Zhao Z J Zhejiang Univ Sci B; 2015 Dec; 16(12):1027-41. PubMed ID: 26642186 [TBL] [Abstract][Full Text] [Related]
71. Cytosolic ascorbate peroxidase 1 protects organelles against oxidative stress by wounding- and jasmonate-induced H(2)O(2) in Arabidopsis plants. Maruta T; Inoue T; Noshi M; Tamoi M; Yabuta Y; Yoshimura K; Ishikawa T; Shigeoka S Biochim Biophys Acta; 2012 Dec; 1820(12):1901-7. PubMed ID: 22921811 [TBL] [Abstract][Full Text] [Related]
72. C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Bate NJ; Rothstein SJ Plant J; 1998 Dec; 16(5):561-9. PubMed ID: 10036774 [TBL] [Abstract][Full Text] [Related]
73. Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Fäldt J; Martin D; Miller B; Rawat S; Bohlmann J Plant Mol Biol; 2003 Jan; 51(1):119-33. PubMed ID: 12602896 [TBL] [Abstract][Full Text] [Related]
74. Arabidopsis NADPH oxidases, AtrbohD and AtrbohF, are essential for jasmonic acid-induced expression of genes regulated by MYC2 transcription factor. Maruta T; Inoue T; Tamoi M; Yabuta Y; Yoshimura K; Ishikawa T; Shigeoka S Plant Sci; 2011 Apr; 180(4):655-60. PubMed ID: 21421415 [TBL] [Abstract][Full Text] [Related]
75. An integrated proteomic approach to decipher the effect of methyl jasmonate elicitation on the proteome of Silybum marianum L. hairy roots. Gharechahi J; Khalili M; Hasanloo T; Salekdeh GH Plant Physiol Biochem; 2013 Sep; 70():115-22. PubMed ID: 23771036 [TBL] [Abstract][Full Text] [Related]
76. The effect of exogenous methyl jasmonate on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in the development of oilseed rape flowers (Brassica napus L.). Pak H; Guo Y; Chen M; Chen K; Li Y; Hua S; Shamsi I; Meng H; Shi C; Jiang L Planta; 2009 Dec; 231(1):79-91. PubMed ID: 19826836 [TBL] [Abstract][Full Text] [Related]
77. Genome-wide dynamic network analysis reveals the potential genes for MeJA-induced growth-to-defense transition. Wang T; Zhang X BMC Plant Biol; 2021 Oct; 21(1):450. PubMed ID: 34615468 [TBL] [Abstract][Full Text] [Related]
78. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Tsuchiya T; Ohta H; Okawa K; Iwamatsu A; Shimada H; Masuda T; Takamiya K Proc Natl Acad Sci U S A; 1999 Dec; 96(26):15362-7. PubMed ID: 10611389 [TBL] [Abstract][Full Text] [Related]
79. Effect of methyl jasmonate on growth processes in pea (Pisum sativum L.). Ivanova AB; Antsygina LL; Yarin AYu ; Grechkin AN Dokl Biol Sci; 2000; 374():482-4. PubMed ID: 11103321 [No Abstract] [Full Text] [Related]
80. A method for diagnosis of plant environmental stresses by gene expression profiling using a cDNA macroarray. Tamaoki M; Matsuyama T; Nakajima N; Aono M; Kubo A; Saji H Environ Pollut; 2004 Sep; 131(1):137-45. PubMed ID: 15210282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]