These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 11171276)
1. Biochemical aspects of castor oil biosynthesis. McKeon TA; Chen GQ; Lin JT Biochem Soc Trans; 2000 Dec; 28(6):972-4. PubMed ID: 11171276 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of ricinoleate in castor oil. McKeon TA; Lin JT; Stafford AE Adv Exp Med Biol; 1999; 464():37-47. PubMed ID: 10335384 [TBL] [Abstract][Full Text] [Related]
3. Deuterium NMR used to indicate a common mechanism for the biosynthesis of ricinoleic acid by Ricinus communis and Claviceps purpurea. Billault I; Mantle PG; Robins RJ J Am Chem Soc; 2004 Mar; 126(10):3250-6. PubMed ID: 15012155 [TBL] [Abstract][Full Text] [Related]
4. Final report on the safety assessment of Ricinus Communis (Castor) Seed Oil, Hydrogenated Castor Oil, Glyceryl Ricinoleate, Glyceryl Ricinoleate SE, Ricinoleic Acid, Potassium Ricinoleate, Sodium Ricinoleate, Zinc Ricinoleate, Cetyl Ricinoleate, Ethyl Ricinoleate, Glycol Ricinoleate, Isopropyl Ricinoleate, Methyl Ricinoleate, and Octyldodecyl Ricinoleate. Int J Toxicol; 2007; 26 Suppl 3():31-77. PubMed ID: 18080873 [TBL] [Abstract][Full Text] [Related]
5. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. Bafor M; Smith MA; Jonsson L; Stobart K; Stymne S Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Burgal J; Shockey J; Lu C; Dyer J; Larson T; Graham I; Browse J Plant Biotechnol J; 2008 Oct; 6(8):819-31. PubMed ID: 18643899 [TBL] [Abstract][Full Text] [Related]
7. Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant. Venegas-Calerón M; Sánchez R; Salas JJ; Garcés R; Martínez-Force E Planta; 2016 Jul; 244(1):245-58. PubMed ID: 27056057 [TBL] [Abstract][Full Text] [Related]
8. Tissue-specific differences in metabolites and transcripts contribute to the heterogeneity of ricinoleic acid accumulation in Ricinus communis L. (castor) seeds. Sturtevant D; Romsdahl TB; Yu XH; Burks DJ; Azad RK; Shanklin J; Chapman KD Metabolomics; 2019 Jan; 15(1):6. PubMed ID: 30830477 [TBL] [Abstract][Full Text] [Related]
9. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Kim HU; Lee KR; Go YS; Jung JH; Suh MC; Kim JB Plant Cell Physiol; 2011 Jun; 52(6):983-93. PubMed ID: 21659329 [TBL] [Abstract][Full Text] [Related]
10. Molecular species of acylglycerols incorporating radiolabeled fatty acids from castor (Ricinus communis L.) microsomal incubations. Lin JT; Chen JM; Liao LP; McKeon TA J Agric Food Chem; 2002 Aug; 50(18):5077-81. PubMed ID: 12188611 [TBL] [Abstract][Full Text] [Related]
11. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor. Tomosugi M; Ichihara K; Saito K Planta; 2006 Jan; 223(2):349-58. PubMed ID: 16133210 [TBL] [Abstract][Full Text] [Related]
12. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. Ruiz Olivares A; Carrillo-González R; González-Chávez Mdel C; Soto Hernández RM J Environ Manage; 2013 Jan; 114():316-23. PubMed ID: 23171605 [TBL] [Abstract][Full Text] [Related]
13. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation. Sánchez-García A; Moreno-Pérez AJ; Muro-Pastor AM; Salas JJ; Garcés R; Martínez-Force E Phytochemistry; 2010 Jun; 71(8-9):860-9. PubMed ID: 20382402 [TBL] [Abstract][Full Text] [Related]
14. Molecular species of PC and PE formed during castor oil biosynthesis. Lin JT; Chen JM; Chen P; Liao LP; McKeon TA Lipids; 2002 Oct; 37(10):991-5. PubMed ID: 12530559 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis of castor oil: effect of polyamines on the acylation of lysophosphatidic acid at the sn-2 position with ricinoleic acid. Tomosugi M; Ohshiro A; Hara S; Ichihara K Biosci Biotechnol Biochem; 2007 Aug; 71(8):2052-6. PubMed ID: 17690446 [TBL] [Abstract][Full Text] [Related]
16. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Broun P; Somerville C Plant Physiol; 1997 Mar; 113(3):933-42. PubMed ID: 9085577 [TBL] [Abstract][Full Text] [Related]
17. Crucial enzymes in the hydroxylated triacylglycerol-ricinoleate biosynthesis pathway of castor bean. Chen Y; Liu L; Tian X; Di J; Su Y; Huang F; Chen Y Curr Protein Pept Sci; 2014; 15(6):572-82. PubMed ID: 25059327 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis of triacylglycerols containing ricinoleate in castor microsomes using 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine as the substrate of oleoyl-12-hydroxylase. Lin JT; Woodruff CL; Lagouche OJ; McKeon TA; Stafford AE; Goodrich-Tanrikulu M; Singleton JA; Haney CA Lipids; 1998 Jan; 33(1):59-69. PubMed ID: 9470174 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a PLDζ2 Homology Gene from Developing Castor Bean Endosperm. Tian B; Sun M; Jayawardana K; Wu D; Chen G Lipids; 2020 Sep; 55(5):537-548. PubMed ID: 32115716 [TBL] [Abstract][Full Text] [Related]
20. Bio-detoxification of ricin in castor bean (Ricinus communis L.) seeds. Sousa NL; Cabral GB; Vieira PM; Baldoni AB; Aragão FJL Sci Rep; 2017 Nov; 7(1):15385. PubMed ID: 29133924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]