These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 11171305)

  • 1. Prey-capture behavior in gymnotid electric fish: motion analysis and effects of water conductivity.
    MacIver MA; Sharabash NM; Nelson ME
    J Exp Biol; 2001 Feb; 204(Pt 3):543-57. PubMed ID: 11171305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling electrosensory and mechanosensory images during the predatory behavior of weakly electric fish.
    Nelson ME; MacIver MA; Coombs S
    Brain Behav Evol; 2002; 59(4):199-210. PubMed ID: 12138340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences.
    Nelson ME; Maciver MA
    J Exp Biol; 1999 May; 202(Pt 10):1195-203. PubMed ID: 10210661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial acuity and prey detection in weakly electric fish.
    Babineau D; Lewis JE; Longtin A
    PLoS Comput Biol; 2007 Mar; 3(3):e38. PubMed ID: 17335346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus.
    Fotowat H; Harrison RR; Krahe R
    J Neurosci; 2013 Aug; 33(34):13758-72. PubMed ID: 23966697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weakly electric fish learn both visual and electrosensory cues in a multisensory object discrimination task.
    Dangelmayer S; Benda J; Grewe J
    J Physiol Paris; 2016 Oct; 110(3 Pt B):182-189. PubMed ID: 27825970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weak signal amplification and detection by higher-order sensory neurons.
    Jung SN; Longtin A; Maler L
    J Neurophysiol; 2016 Apr; 115(4):2158-75. PubMed ID: 26843601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish.
    Carr CE; Maler L; Sas E
    J Comp Neurol; 1982 Oct; 211(2):139-53. PubMed ID: 7174886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus.
    Smith GT; Unguez GA; Weber CM
    J Neurobiol; 2006 Aug; 66(9):1011-31. PubMed ID: 16779822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptive field organization across multiple electrosensory maps. II. Computational analysis of the effects of receptive field size on prey localization.
    Maler L
    J Comp Neurol; 2009 Oct; 516(5):394-422. PubMed ID: 19655388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paddlefish strike at artificial dipoles simulating the weak electric fields of planktonic prey.
    Wojtenek W; Pei X; Wilkens LA
    J Exp Biol; 2001 Apr; 204(Pt 8):1391-9. PubMed ID: 11273801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia.
    Mucha S; Chapman LJ; Krahe R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 May; 207(3):369-379. PubMed ID: 33751182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE
    J Exp Biol; 2008 May; 211(Pt 10):1657-67. PubMed ID: 18456893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticity of feedback inputs in the apteronotid electrosensory system.
    Bastian J
    J Exp Biol; 1999 May; 202(Pt 10):1327-37. PubMed ID: 10210673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Body modeling and model-based tracking for neuroethology.
    MacIver MA; Nelson ME
    J Neurosci Methods; 2000 Feb; 95(2):133-43. PubMed ID: 10752484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioral evidence for post-pause reduced responsiveness in the electrosensory system of Gymnotus carapo.
    Schuster S
    J Exp Biol; 2002 Aug; 205(Pt 16):2525-33. PubMed ID: 12124376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prey detection in selective plankton feeding by the paddlefish: is the electric sense sufficient?
    Wilkens LA; Wettring B; Wagner E; Wojtenek W; Russell D
    J Exp Biol; 2001 Apr; 204(Pt 8):1381-9. PubMed ID: 11273800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptive field organization of electrosensory neurons in the paddlefish (Polyodon spathula).
    Chagnaud BP; Wilkens LA; Hofmann MH
    J Physiol Paris; 2008; 102(4-6):246-55. PubMed ID: 18984044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory Specializations of Mormyrid Fish Are Associated with Species Differences in Electric Signal Localization Behavior.
    Vélez A; Ryoo DY; Carlson BA
    Brain Behav Evol; 2018; 92(3-4):125-141. PubMed ID: 30820010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Species differences in group size and electrosensory interference in weakly electric fishes: implications for electrosensory processing.
    Stamper SA; Carrera-G E; Tan EW; Fugère V; Krahe R; Fortune ES
    Behav Brain Res; 2010 Mar; 207(2):368-76. PubMed ID: 19874855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.