These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 11171597)
1. Effects of cellular ATP depletion on glucose transport and insulin signaling in 3T3-L1 adipocytes. Kang J; Heart E; Sung CK Am J Physiol Endocrinol Metab; 2001 Mar; 280(3):E428-35. PubMed ID: 11171597 [TBL] [Abstract][Full Text] [Related]
2. Glucosamine-induced insulin resistance in 3T3-L1 adipocytes is caused by depletion of intracellular ATP. Hresko RC; Heimberg H; Chi MM; Mueckler M J Biol Chem; 1998 Aug; 273(32):20658-68. PubMed ID: 9685425 [TBL] [Abstract][Full Text] [Related]
3. Development and comparison of two 3T3-L1 adipocyte models of insulin resistance: increased glucose flux vs glucosamine treatment. Ross SA; Chen X; Hope HR; Sun S; McMahon EG; Broschat K; Gulve EA Biochem Biophys Res Commun; 2000 Jul; 273(3):1033-41. PubMed ID: 10891367 [TBL] [Abstract][Full Text] [Related]
4. High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes. Nelson BA; Robinson KA; Buse MG Diabetes; 2000 Jun; 49(6):981-91. PubMed ID: 10866051 [TBL] [Abstract][Full Text] [Related]
5. Glucosamine-induced insulin resistance in 3T3-L1 adipocytes. Heart E; Choi WS; Sung CK Am J Physiol Endocrinol Metab; 2000 Jan; 278(1):E103-12. PubMed ID: 10644543 [TBL] [Abstract][Full Text] [Related]
6. Rottlerin inhibits multiple steps involved in insulin-induced glucose uptake in 3T3-L1 adipocytes. Bazuine M; van der Zon GC; van de Ven R; van den Broek PJ; Antonie Maassen J Biochem Pharmacol; 2004 Jul; 68(1):105-12. PubMed ID: 15183122 [TBL] [Abstract][Full Text] [Related]
7. Defective Akt activation is associated with glucose- but not glucosamine-induced insulin resistance. Nelson BA; Robinson KA; Buse MG Am J Physiol Endocrinol Metab; 2002 Mar; 282(3):E497-506. PubMed ID: 11832350 [TBL] [Abstract][Full Text] [Related]
8. Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes. Tremblay F; Gagnon A; Veilleux A; Sorisky A; Marette A Endocrinology; 2005 Mar; 146(3):1328-37. PubMed ID: 15576463 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of TFAM protects 3T3-L1 adipocytes from NYGGF4 (PID1) overexpression-induced insulin resistance and mitochondrial dysfunction. Shi CM; Xu GF; Yang L; Fu ZY; Chen L; Fu HL; Shen YH; Zhu L; Ji CB; Guo XR Cell Biochem Biophys; 2013 Jul; 66(3):489-97. PubMed ID: 23274913 [TBL] [Abstract][Full Text] [Related]
10. Insulin-mediated cellular insulin resistance decreases osmotic shock-induced glucose transport in 3T3-L1 adipocytes. Janez A; Worrall DS; Olefsky JM Endocrinology; 2000 Dec; 141(12):4657-63. PubMed ID: 11108280 [TBL] [Abstract][Full Text] [Related]
11. Long-term insulin treatment of 3T3-L1 adipocytes results in mis-targeting of GLUT4: implications for insulin-stimulated glucose transport. Maier VH; Gould GW Diabetologia; 2000 Oct; 43(10):1273-81. PubMed ID: 11079746 [TBL] [Abstract][Full Text] [Related]
12. Knockdown of LYRM1 rescues insulin resistance and mitochondrial dysfunction induced by FCCP in 3T3-L1 adipocytes. Zhang M; Qin ZY; Dai YM; Wang YM; Zhu GZ; Zhao YP; Ji CB; Zhu JG; Shi CM; Qiu J; Cao XG; Guo XR Cell Biochem Biophys; 2014 Sep; 70(1):667-75. PubMed ID: 24771405 [TBL] [Abstract][Full Text] [Related]
13. The effects of intracellular calcium depletion on insulin signaling in 3T3-L1 adipocytes. Worrall DS; Olefsky JM Mol Endocrinol; 2002 Feb; 16(2):378-89. PubMed ID: 11818508 [TBL] [Abstract][Full Text] [Related]
14. Epidermal growth factor (EGF) receptor carboxy-terminal domains are required for EGF-induced glucose transport in transgenic 3T3-L1 adipocytes. Hardy RW; Gupta KB; McDonald JM; Williford J; Wells A Endocrinology; 1995 Feb; 136(2):431-9. PubMed ID: 7835273 [TBL] [Abstract][Full Text] [Related]
15. Rottlerin inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes by uncoupling mitochondrial oxidative phosphorylation. Kayali AG; Austin DA; Webster NJ Endocrinology; 2002 Oct; 143(10):3884-96. PubMed ID: 12239100 [TBL] [Abstract][Full Text] [Related]
16. Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Yamaguchi S; Katahira H; Ozawa S; Nakamichi Y; Tanaka T; Shimoyama T; Takahashi K; Yoshimoto K; Imaizumi MO; Nagamatsu S; Ishida H Am J Physiol Endocrinol Metab; 2005 Oct; 289(4):E643-9. PubMed ID: 15928020 [TBL] [Abstract][Full Text] [Related]
17. Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells. Shi X; Burkart A; Nicoloro SM; Czech MP; Straubhaar J; Corvera S J Biol Chem; 2008 Nov; 283(45):30658-67. PubMed ID: 18779333 [TBL] [Abstract][Full Text] [Related]
18. Insulin-like and non-insulin-like selenium actions in 3T3-L1 adipocytes. Heart E; Sung CK J Cell Biochem; 2003 Mar; 88(4):719-31. PubMed ID: 12577306 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of adaptation of glucose transporters to changes in the oxidative chain of muscle and fat cells. Bashan N; Burdett E; Gumà A; Sargeant R; Tumiati L; Liu Z; Klip A Am J Physiol; 1993 Feb; 264(2 Pt 1):C430-40. PubMed ID: 8447373 [TBL] [Abstract][Full Text] [Related]
20. Quantification of SNARE protein levels in 3T3-L1 adipocytes: implications for insulin-stimulated glucose transport. Hickson GR; Chamberlain LH; Maier VH; Gould GW Biochem Biophys Res Commun; 2000 Apr; 270(3):841-5. PubMed ID: 10772913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]