BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 11171631)

  • 1. Ontogenic and longitudinal activity of Na(+)-nucleoside transporters in the human intestine.
    Ngo LY; Patil SD; Unadkat JD
    Am J Physiol Gastrointest Liver Physiol; 2001 Mar; 280(3):G475-81. PubMed ID: 11171631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium-dependent nucleoside transport in the human intestinal brush-border membrane.
    Patil SD; Unadkat JD
    Am J Physiol; 1997 Jun; 272(6 Pt 1):G1314-20. PubMed ID: 9227465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning, functional expression and chromosomal localization of a cDNA encoding a human Na+/nucleoside cotransporter (hCNT2) selective for purine nucleosides and uridine.
    Ritzel MW; Yao SY; Ng AM; Mackey JR; Cass CE; Young JD
    Mol Membr Biol; 1998; 15(4):203-11. PubMed ID: 10087507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of Na(+)-dependent nucleoside transport in the proximal and distal small intestine of cows.
    Scharrer E; Grenacher B
    J Comp Physiol B; 2002 Apr; 172(3):191-6. PubMed ID: 11919700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of Na(+)-dependent intestinal nucleoside transport in the pig.
    Scharrer E; Rech KS; Grenacher B
    J Comp Physiol B; 2002 May; 172(4):309-14. PubMed ID: 12037593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-inhibitory profiles of nucleosides for the human intestinal N1 and N2 Na+-nucleoside transporters.
    Patil SD; Ngo LY; Unadkat JD
    Cancer Chemother Pharmacol; 2000; 46(5):394-402. PubMed ID: 11127944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleosides are efficiently absorbed by Na(+)-dependent transport across the intestinal brush border membrane in veal calves.
    Theisinger A; Grenacher B; Rech KS; Scharrer E
    J Dairy Sci; 2002 Sep; 85(9):2308-14. PubMed ID: 12362464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport mechanisms of nucleosides and the derivative, 6-mercaptopurine riboside across rate intestinal brush-border membranes.
    Iseki K; Sugawara M; Fujiwara T; Naasani I; Kobayashi M; Miyazaki K
    Biochim Biophys Acta; 1996 Jan; 1278(1):105-10. PubMed ID: 8611596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple sodium-dependent nucleoside transport systems in bovine renal brush-border membrane vesicles.
    Williams TC; Jarvis SM
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):27-33. PubMed ID: 2001243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional expression of human intestinal Na+-dependent and Na+-independent nucleoside transporters in Xenopus laevis oocytes.
    Chandrasena G; Giltay R; Patil SD; Bakken A; Unadkat JD
    Biochem Pharmacol; 1997 Jun; 53(12):1909-18. PubMed ID: 9256166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate selectivity, potential sensitivity and stoichiometry of Na(+)-nucleoside transport in brush border membrane vesicles from human kidney.
    Gutierrez MM; Giacomini KM
    Biochim Biophys Acta; 1993 Jul; 1149(2):202-8. PubMed ID: 8323939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a bioengineered chimeric Na+-nucleoside transporter.
    Wang J; Giacomini KM
    Mol Pharmacol; 1999 Feb; 55(2):234-40. PubMed ID: 9927613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the rabbit intestinal N2 Na+/nucleoside transporter in Xenopus laevis oocytes.
    Jarvis SM; Griffith DA
    Biochem J; 1991 Sep; 278 ( Pt 2)(Pt 2):605-7. PubMed ID: 1898349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutritional regulation of nucleoside transporter expression in rat small intestine.
    Valdés R; Ortega MA; Casado FJ; Felipe A; Gil A; Sánchez-Pozo A; Pastor-Anglada M
    Gastroenterology; 2000 Dec; 119(6):1623-30. PubMed ID: 11113083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib).
    Ritzel MW; Ng AM; Yao SY; Graham K; Loewen SK; Smith KM; Ritzel RG; Mowles DA; Carpenter P; Chen XZ; Karpinski E; Hyde RJ; Baldwin SA; Cass CE; Young JD
    J Biol Chem; 2001 Jan; 276(4):2914-27. PubMed ID: 11032837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [High intestinal transport activity for nucleosides in cattle: a synopsis].
    Scharrer E; Grenacher B
    Dtsch Tierarztl Wochenschr; 2005 Nov; 112(11):418-22. PubMed ID: 16366036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cation coupling properties of human concentrative nucleoside transporters hCNT1, hCNT2 and hCNT3.
    Smith KM; Slugoski MD; Cass CE; Baldwin SA; Karpinski E; Young JD
    Mol Membr Biol; 2007; 24(1):53-64. PubMed ID: 17453413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of broadly selective equilibrative and concentrative nucleoside transporters, hENT1 and hCNT3, in human kidney.
    Damaraju VL; Elwi AN; Hunter C; Carpenter P; Santos C; Barron GM; Sun X; Baldwin SA; Young JD; Mackey JR; Sawyer MB; Cass CE
    Am J Physiol Renal Physiol; 2007 Jul; 293(1):F200-11. PubMed ID: 17409283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium uptake by intestinal brush border membrane vesicles. Comparison with in vivo calcium transport.
    Schedl HP; Wilson HD
    J Clin Invest; 1985 Nov; 76(5):1871-8. PubMed ID: 2997294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Absorption of D-glucose by the small intestine of the human fetus (using brush border membrane vesicles of the jejunum)].
    Iioka H; Moriyama IS; Hino K; Itani Y; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1987 Mar; 39(3):347-51. PubMed ID: 3559320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.