These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11171956)

  • 41. The molecular mechanism of virus induction. I. A procedure for the biochemical assay of prophage induction.
    Smith CL; Oishi M
    Mol Gen Genet; 1976 Oct; 148(2):131-8. PubMed ID: 790152
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Theory of regulation by the attenuation mechanism: stochastic model for the attenuation fo the Escherichia coli tryptophan operon.
    Manabe T
    J Theor Biol; 1981 Aug; 91(4):527-44. PubMed ID: 6173543
    [No Abstract]   [Full Text] [Related]  

  • 43. The E. coli bio operon: transcriptional repression by an essential protein modification enzyme.
    Cronan JE
    Cell; 1989 Aug; 58(3):427-9. PubMed ID: 2667763
    [No Abstract]   [Full Text] [Related]  

  • 44. Letter: Decay of messenger RNA from the tryptophan operon of Escherichia coli as a function of growth temperature.
    Wice M; Kennell D
    J Mol Biol; 1974 Apr; 84(4):649-52. PubMed ID: 4601393
    [No Abstract]   [Full Text] [Related]  

  • 45. Multiple feedback loops are key to a robust dynamic performance of tryptophan regulation in Escherichia coli.
    Venkatesh KV; Bhartiya S; Ruhela A
    FEBS Lett; 2004 Apr; 563(1-3):234-40. PubMed ID: 15063755
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new method for the analysis of the dynamics of the molecular genetic control systems. II. Application of the method of generalized threshold models in the investigation of concrete genetic systems.
    Prokudina EI; Valeev RYu ; Tchuraev RN
    J Theor Biol; 1991 Jul; 151(1):89-110. PubMed ID: 1943138
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolic design based on a coupled gene expression-metabolic network model of tryptophan production in Escherichia coli.
    Schmid JW; Mauch K; Reuss M; Gilles ED; Kremling A
    Metab Eng; 2004 Oct; 6(4):364-77. PubMed ID: 15491865
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiple feedback loop design in the tryptophan regulatory network of Escherichia coli suggests a paradigm for robust regulation of processes in series.
    Bhartiya S; Chaudhary N; Venkatesh KV; Doyle FJ
    J R Soc Interface; 2006 Jun; 3(8):383-91. PubMed ID: 16849267
    [TBL] [Abstract][Full Text] [Related]  

  • 49. System-level analysis of tryptophan regulation in Escherichia coli--performance under starved and well-fed conditions.
    Chaudhary N; Bhartiya S; Venkatesh KV
    IET Syst Biol; 2007 May; 1(3):181-9. PubMed ID: 17591177
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling operon dynamics: the tryptophan and lactose operons as paradigms.
    Mackey MC; Santillán M; Yildirim N
    C R Biol; 2004 Mar; 327(3):211-24. PubMed ID: 15127892
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Boolean Models of the Transport, Synthesis, and Metabolism of Tryptophan in Escherichia coli.
    Deal I; Macauley M; Davies R
    Bull Math Biol; 2023 Mar; 85(4):29. PubMed ID: 36877290
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A coarse-grained biophysical model of E. coli and its application to perturbation of the rRNA operon copy number.
    Tadmor AD; Tlusty T
    PLoS Comput Biol; 2008 May; 4(4):e1000038. PubMed ID: 18437222
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Complex behaviour of the repressible operon.
    Sinha S; Ramaswamy R
    J Theor Biol; 1988 Jun; 132(3):307-18. PubMed ID: 3226131
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling and optimization of a multi-product biosynthesis factory for multiple objectives.
    Lee FC; Pandu Rangaiah G; Lee DY
    Metab Eng; 2010 May; 12(3):251-67. PubMed ID: 20051269
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expression of the tryptophan operon in merodiploids of Escherichia coli. I. Gene dosage, gene position and marker effects.
    Stetson H; Somerville RL
    Mol Gen Genet; 1971; 111(4):342-51. PubMed ID: 4936311
    [No Abstract]   [Full Text] [Related]  

  • 56. Cellular control models with linked positive and negative feedback and delays. II. Linear analysis and local stability.
    Mahaffy JM
    J Theor Biol; 1984 Jan; 106(2):103-18. PubMed ID: 6369003
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of Four Different Regulatory Mechanisms on the Dynamics of Gene Regulatory Cascades.
    Hansen S; Krishna S; Semsey S; Lo Svenningsen S
    Sci Rep; 2015 Jul; 5():12186. PubMed ID: 26184971
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering of a TrpR-Based Biosensor for Altered Dynamic Range and Ligand Preference.
    Gong X; Zhang R; Wang J; Yan Y
    ACS Synth Biol; 2022 Jun; 11(6):2175-2183. PubMed ID: 35594503
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamics of transcription-translation coordination tune bacterial indole signaling.
    Wang T; Zheng X; Ji H; Wang TL; Xing XH; Zhang C
    Nat Chem Biol; 2020 Apr; 16(4):440-449. PubMed ID: 31873224
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isocost Lines Describe the Cellular Economy of Genetic Circuits.
    Gyorgy A; Jiménez JI; Yazbek J; Huang HH; Chung H; Weiss R; Del Vecchio D
    Biophys J; 2015 Aug; 109(3):639-46. PubMed ID: 26244745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.