These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 11172240)
1. Radiofrequency energy-induced heating of bovine capsular tissue: Temperature changes produced by bipolar versus monopolar electrodes. Shellock FG Arthroscopy; 2001 Feb; 17(2):124-31. PubMed ID: 11172240 [TBL] [Abstract][Full Text] [Related]
2. Radiofrequency energy induced heating of bovine capsular tissue: in vitro assessment of newly developed, temperature-controlled monopolar and bipolar radiofrequency electrodes. Shellock FG Knee Surg Sports Traumatol Arthrosc; 2002 Jul; 10(4):254-9. PubMed ID: 12211186 [TBL] [Abstract][Full Text] [Related]
3. Radiofrequency energy induced heating of bovine articular cartilage: comparison between temperature-controlled, monopolar, and bipolar systems. Shellock FG Knee Surg Sports Traumatol Arthrosc; 2001 Nov; 9(6):392-7. PubMed ID: 11734879 [TBL] [Abstract][Full Text] [Related]
4. Temperature changes associated with radiofrequency energy-induced heating of bovine capsular tissue: evaluation of bipolar RF electrodes. Shellock FG; Shields CL Arthroscopy; 2000; 16(4):348-58. PubMed ID: 10802471 [TBL] [Abstract][Full Text] [Related]
5. Radiofrequency energy-induced heating of bovine articular cartilage: evaluation of a new temperature-controlled, bipolar radiofrequency system used at different settings. Shellock FG J Knee Surg; 2002; 15(2):90-6. PubMed ID: 12013079 [TBL] [Abstract][Full Text] [Related]
6. A comparative experimental study of the in-vitro efficiency of hypertonic saline-enhanced hepatic bipolar and monopolar radiofrequency ablation. Lee JM; Han JK; Kim SH; Sohn KL; Lee KH; Ah SK; Choi BI Korean J Radiol; 2003; 4(3):163-9. PubMed ID: 14530645 [TBL] [Abstract][Full Text] [Related]
7. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging. Viallon M; Terraz S; Roland J; Dumont E; Becker CD; Salomir R Med Phys; 2010 Apr; 37(4):1491-506. PubMed ID: 20443470 [TBL] [Abstract][Full Text] [Related]
8. Ex vivo experiment of saline-enhanced hepatic bipolar radiofrequency ablation with a perfused needle electrode: comparison with conventional monopolar and simultaneous monopolar modes. Lee JM; Kim SH; Han JK; Sohn KL; Choi BI Cardiovasc Intervent Radiol; 2005; 28(3):338-45. PubMed ID: 15789259 [TBL] [Abstract][Full Text] [Related]
9. The use of radiofrequency energy during arthroscopic surgery and its effects on intraarticular tissues. Horstman CL; McLaughlin RM Vet Comp Orthop Traumatol; 2006; 19(2):65-71. PubMed ID: 16810347 [TBL] [Abstract][Full Text] [Related]
10. Interrelation of tissue temperature versus flow velocity in two different kinds of temperature controlled catheter radiofrequency energy applications. Grumbrecht S; Neuzner J; Pitschner HF J Interv Card Electrophysiol; 1998 Jun; 2(2):211-9. PubMed ID: 9870015 [TBL] [Abstract][Full Text] [Related]
11. Needle-based ablation of renal parenchyma using microwave, cryoablation, impedance- and temperature-based monopolar and bipolar radiofrequency, and liquid and gel chemoablation: laboratory studies and review of the literature. Rehman J; Landman J; Lee D; Venkatesh R; Bostwick DG; Sundaram C; Clayman RV J Endourol; 2004 Feb; 18(1):83-104. PubMed ID: 15006061 [TBL] [Abstract][Full Text] [Related]
12. Thermal profile of radiofrequency energy in the inferior glenohumeral ligament. Liao WL; Hedman TP; Vangsness CT Arthroscopy; 2004 Jul; 20(6):603-8. PubMed ID: 15241311 [TBL] [Abstract][Full Text] [Related]
13. Thermometric determination of cartilage matrix temperatures during thermal chondroplasty: comparison of bipolar and monopolar radiofrequency devices. Edwards RB; Lu Y; Rodriguez E; Markel MD Arthroscopy; 2002 Apr; 18(4):339-46. PubMed ID: 11951190 [TBL] [Abstract][Full Text] [Related]
14. Radiofrequency energy-induced heating of bovine articular cartilage using a bipolar radiofrequency electrode. Shellock FG; Shields CL Am J Sports Med; 2000; 28(5):720-4. PubMed ID: 11032231 [TBL] [Abstract][Full Text] [Related]
15. Comparison of two radiofrequency-based hemostatic devices: saline-linked bipolar Moll X; Fondevila D; GarcĂa-Arnas F; Burdio F; Trujillo M; Irastorza RM; Berjano E; Andaluz A Int J Hyperthermia; 2022; 39(1):1397-1407. PubMed ID: 36351216 [TBL] [Abstract][Full Text] [Related]
16. Wet radio-frequency ablation using multiple electrodes: comparative study of bipolar versus monopolar modes in the bovine liver. Lee JM; Han JK; Kim SH; Han CJ; An SK; Lee JY; Choi BI Eur J Radiol; 2005 Jun; 54(3):408-17. PubMed ID: 15899344 [TBL] [Abstract][Full Text] [Related]
17. Effects of monopolar radiofrequency heating on intradiscal pressure in sheep. Podhajsky RJ; Belous A; Johnson K; Maul DH; Finch PM Spine J; 2007; 7(2):229-34. PubMed ID: 17321974 [TBL] [Abstract][Full Text] [Related]
18. Effect of simulated shoulder thermal capsulorrhaphy using radiofrequency energy on glenohumeral fluid temperature. Lu Y; Bogdanske J; Lopez M; Cole BJ; Markel MD Arthroscopy; 2005 May; 21(5):592-6. PubMed ID: 15891727 [TBL] [Abstract][Full Text] [Related]
19. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver. Lee JM; Han JK; Kim SH; Shin KS; Lee JY; Park HS; Hur H; Choi BI Korean J Radiol; 2004; 5(4):258-65. PubMed ID: 15637476 [TBL] [Abstract][Full Text] [Related]
20. The interaction between electrosurgical generators, endoscopic electrodes, and tissue. Tucker RD; Sievert CE; Kramolowsky EV; Vennes JA; Silvis SE Gastrointest Endosc; 1992; 38(2):118-22. PubMed ID: 1568605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]