BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 11172707)

  • 1. Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1.
    Emili A; Schieltz DM; Yates JR; Hartwell LH
    Mol Cell; 2001 Jan; 7(1):13-20. PubMed ID: 11172707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asf1 links Rad53 to control of chromatin assembly.
    Hu F; Alcasabas AA; Elledge SJ
    Genes Dev; 2001 May; 15(9):1061-6. PubMed ID: 11331602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of histone deposition proteins Asf1/Hir1 by multiple DNA damage checkpoint kinases in Saccharomyces cerevisiae.
    Sharp JA; Rizki G; Kaufman PD
    Genetics; 2005 Nov; 171(3):885-99. PubMed ID: 16020781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Ddc1-Mec3-Rad17 sliding clamp regulates histone-histone chaperone interactions and DNA replication-coupled nucleosome assembly in budding yeast.
    Burgess RJ; Han J; Zhang Z
    J Biol Chem; 2014 Apr; 289(15):10518-10529. PubMed ID: 24573675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae.
    Dohrmann PR; Sclafani RA
    Genetics; 2006 Sep; 174(1):87-99. PubMed ID: 16816422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FHA domain-mediated DNA checkpoint regulation of Rad53.
    Schwartz MF; Lee SJ; Duong JK; Eminaga S; Stern DF
    Cell Cycle; 2003; 2(4):384-96. PubMed ID: 12851493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surprising complexity of the Asf1 histone chaperone-Rad53 kinase interaction.
    Jiao Y; Seeger K; Lautrette A; Gaubert A; Mousson F; Guerois R; Mann C; Ochsenbein F
    Proc Natl Acad Sci U S A; 2012 Feb; 109(8):2866-71. PubMed ID: 22323608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways.
    Mousson F; Ochsenbein F; Mann C
    Chromosoma; 2007 Apr; 116(2):79-93. PubMed ID: 17180700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair.
    Tsabar M; Waterman DP; Aguilar F; Katsnelson L; Eapen VV; Memisoglu G; Haber JE
    Genes Dev; 2016 May; 30(10):1211-24. PubMed ID: 27222517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of tolerance to DNA alkylating damage by Dot1 and Rad53 in Saccharomyces cerevisiae.
    Conde F; Ontoso D; Acosta I; Gallego-Sánchez A; Bueno A; San-Segundo PA
    DNA Repair (Amst); 2010 Oct; 9(10):1038-49. PubMed ID: 20674515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic interaction of RAD53 protein kinase with histones is important for DNA replication.
    Holzen TM; Sclafani R
    Cell Cycle; 2010 Dec; 9(23):4735-47. PubMed ID: 21099362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1- and Rad53-dependent checkpoint in budding yeast.
    Neecke H; Lucchini G; Longhese MP
    EMBO J; 1999 Aug; 18(16):4485-97. PubMed ID: 10449414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of chromatin-associated proteins in Sordaria macrospora reveals similar roles for RTT109 and ASF1 in development and DNA damage response.
    Breuer J; Ferreira DEA; Kramer M; Bollermann J; Nowrousian M
    G3 (Bethesda); 2024 Mar; 14(3):. PubMed ID: 38261383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional conservation and specialization among eukaryotic anti-silencing function 1 histone chaperones.
    Tamburini BA; Carson JJ; Adkins MW; Tyler JK
    Eukaryot Cell; 2005 Sep; 4(9):1583-90. PubMed ID: 16151251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage.
    O'Neill BM; Szyjka SJ; Lis ET; Bailey AO; Yates JR; Aparicio OM; Romesberg FE
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9290-5. PubMed ID: 17517611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell cycle-dependent phosphorylation of Rad53 kinase by Cdc5 and Cdc28 modulates checkpoint adaptation.
    Schleker T; Shimada K; Sack R; Pike BL; Gasser SM
    Cell Cycle; 2010 Jan; 9(2):350-63. PubMed ID: 20046099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel non-canonical forkhead-associated (FHA) domain-binding interface mediates the interaction between Rad53 and Dbf4 proteins.
    Matthews LA; Selvaratnam R; Jones DR; Akimoto M; McConkey BJ; Melacini G; Duncker BP; Guarné A
    J Biol Chem; 2014 Jan; 289(5):2589-99. PubMed ID: 24285546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1.
    Zhao X; Rothstein R
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3746-51. PubMed ID: 11904430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DNA damage response pathway controlled by Tel1 and the Mre11 complex.
    Usui T; Ogawa H; Petrini JH
    Mol Cell; 2001 Jun; 7(6):1255-66. PubMed ID: 11430828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling.
    Lee SJ; Schwartz MF; Duong JK; Stern DF
    Mol Cell Biol; 2003 Sep; 23(17):6300-14. PubMed ID: 12917350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.