BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 11172707)

  • 21. Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade.
    Lee H; Yuan C; Hammet A; Mahajan A; Chen ES; Wu MR; Su MI; Heierhorst J; Tsai MD
    Mol Cell; 2008 Jun; 30(6):767-78. PubMed ID: 18570878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of Mrc1, a mediator of the replication checkpoint, by telomere erosion.
    Grandin N; Bailly A; Charbonneau M
    Biol Cell; 2005 Oct; 97(10):799-814. PubMed ID: 15760303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. H2B mono-ubiquitylation facilitates fork stalling and recovery during replication stress by coordinating Rad53 activation and chromatin assembly.
    Lin CY; Wu MY; Gay S; Marjavaara L; Lai MS; Hsiao WC; Hung SH; Tseng HY; Wright DE; Wang CY; Hsu GS; Devys D; Chabes A; Kao CF
    PLoS Genet; 2014 Oct; 10(10):e1004667. PubMed ID: 25275495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways.
    Sun Z; Fay DS; Marini F; Foiani M; Stern DF
    Genes Dev; 1996 Feb; 10(4):395-406. PubMed ID: 8600024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rad53: a controller ensuring the fine-tuning of histone levels.
    Quivy JP; Almouzni G
    Cell; 2003 Nov; 115(5):508-10. PubMed ID: 14651842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae.
    Gunjan A; Verreault A
    Cell; 2003 Nov; 115(5):537-49. PubMed ID: 14651846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase.
    Pellicioli A; Lucca C; Liberi G; Marini F; Lopes M; Plevani P; Romano A; Di Fiore PP; Foiani M
    EMBO J; 1999 Nov; 18(22):6561-72. PubMed ID: 10562568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of Dun1 activation by Rad53 phosphorylation in Saccharomyces cerevisiae.
    Chen SH; Smolka MB; Zhou H
    J Biol Chem; 2007 Jan; 282(2):986-95. PubMed ID: 17114794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A kinase's work is never done: Rad53 monitors chromatin near replication origins.
    Formosa T
    Cell Cycle; 2011 Feb; 10(4):573-4. PubMed ID: 21311236
    [No Abstract]   [Full Text] [Related]  

  • 30. Prevalent and dynamic binding of the cell cycle checkpoint kinase Rad53 to gene promoters.
    Sheu YJ; Kawaguchi RK; Gillis J; Stillman B
    Elife; 2022 Dec; 11():. PubMed ID: 36520028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The spindle assembly checkpoint regulates the phosphorylation state of a subset of DNA checkpoint proteins in Saccharomyces cerevisiae.
    Clémenson C; Marsolier-Kergoat MC
    Mol Cell Biol; 2006 Dec; 26(24):9149-61. PubMed ID: 17060453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint.
    Sun Z; Hsiao J; Fay DS; Stern DF
    Science; 1998 Jul; 281(5374):272-4. PubMed ID: 9657725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways.
    Sanchez Y; Desany BA; Jones WJ; Liu Q; Wang B; Elledge SJ
    Science; 1996 Jan; 271(5247):357-60. PubMed ID: 8553072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The C terminus of the histone chaperone Asf1 cross-links to histone H3 in yeast and promotes interaction with histones H3 and H4.
    Dennehey BK; Noone S; Liu WH; Smith L; Churchill ME; Tyler JK
    Mol Cell Biol; 2013 Feb; 33(3):605-21. PubMed ID: 23184661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage.
    Vialard JE; Gilbert CS; Green CM; Lowndes NF
    EMBO J; 1998 Oct; 17(19):5679-88. PubMed ID: 9755168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants.
    Kats ES; Albuquerque CP; Zhou H; Kolodner RD
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3710-5. PubMed ID: 16501045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms.
    Sanchez Y; Bachant J; Wang H; Hu F; Liu D; Tetzlaff M; Elledge SJ
    Science; 1999 Nov; 286(5442):1166-71. PubMed ID: 10550056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MEC1-dependent phosphorylation of Rad9p in response to DNA damage.
    Emili A
    Mol Cell; 1998 Aug; 2(2):183-9. PubMed ID: 9734355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Replication-independent histone deposition by the HIR complex and Asf1.
    Green EM; Antczak AJ; Bailey AO; Franco AA; Wu KJ; Yates JR; Kaufman PD
    Curr Biol; 2005 Nov; 15(22):2044-9. PubMed ID: 16303565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase.
    Shimada K; Pasero P; Gasser SM
    Genes Dev; 2002 Dec; 16(24):3236-52. PubMed ID: 12502744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.