These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11172809)

  • 1. Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels.
    Soom M; Schönherr R; Kubo Y; Kirsch C; Klinger R; Heinemann SH
    FEBS Lett; 2001 Feb; 490(1-2):49-53. PubMed ID: 11172809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen sulfide inhibits Kir2 and Kir3 channels by decreasing sensitivity to the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP
    Ha J; Xu Y; Kawano T; Hendon T; Baki L; Garai S; Papapetropoulos A; Thakur GA; Plant LD; Logothetis DE
    J Biol Chem; 2018 Mar; 293(10):3546-3561. PubMed ID: 29317494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanosensitivity of GIRK channels is mediated by protein kinase C-dependent channel-phosphatidylinositol 4,5-bisphosphate interaction.
    Zhang L; Lee JK; John SA; Uozumi N; Kodama I
    J Biol Chem; 2004 Feb; 279(8):7037-47. PubMed ID: 14660621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma.
    Huang CL; Feng S; Hilgemann DW
    Nature; 1998 Feb; 391(6669):803-6. PubMed ID: 9486652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in Nature Conferred a High Affinity Phosphatidylinositol 4,5-Bisphosphate-binding Site in Vertebrate Inwardly Rectifying Potassium Channels.
    Tang QY; Larry T; Hendra K; Yamamoto E; Bell J; Cui M; Logothetis DE; Boland LM
    J Biol Chem; 2015 Jul; 290(27):16517-29. PubMed ID: 25957411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regions responsible for the assembly of inwardly rectifying potassium channels.
    Tinker A; Jan YN; Jan LY
    Cell; 1996 Nov; 87(5):857-68. PubMed ID: 8945513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual Mechanism for Inhibition of Inwardly Rectifying Kir2.x Channels by Quinidine Involving Direct Pore Block and PIP
    Koepple C; Scherer D; Seyler C; Scholz E; Thomas D; Katus HA; Zitron E
    J Pharmacol Exp Ther; 2017 May; 361(2):209-218. PubMed ID: 28188270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of extracellular cations on the inward rectifying K+ channels Kir2.1 and Kir3.1/Kir3.4.
    Owen JM; Quinn CC; Leach R; Findlay JB; Boyett MR
    Exp Physiol; 1999 May; 84(3):471-88. PubMed ID: 10362846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of the physical interaction between the intracellular domains of an inwardly rectifying potassium channel, Kir6.2.
    Tucker SJ; Ashcroft FM
    J Biol Chem; 1999 Nov; 274(47):33393-7. PubMed ID: 10559219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism.
    Liou HH; Zhou SS; Huang CL
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5820-5. PubMed ID: 10318968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions.
    Zhang H; He C; Yan X; Mirshahi T; Logothetis DE
    Nat Cell Biol; 1999 Jul; 1(3):183-8. PubMed ID: 10559906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gating of G protein-sensitive inwardly rectifying K+ channels through phosphatidylinositol 4,5-bisphosphate.
    Logothetis DE; Zhang H
    J Physiol; 1999 Nov; 520 Pt 3(Pt 3):630. PubMed ID: 10545130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational changes at cytoplasmic intersubunit interactions control Kir channel gating.
    Wang S; Borschel WF; Heyman S; Hsu P; Nichols CG
    J Biol Chem; 2017 Jun; 292(24):10087-10096. PubMed ID: 28446610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion selectivity filter regulates local anesthetic inhibition of G-protein-gated inwardly rectifying K+ channels.
    Slesinger PA
    Biophys J; 2001 Feb; 80(2):707-18. PubMed ID: 11159438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute suppression of inwardly rectifying Kir2.1 channels by direct tyrosine kinase phosphorylation.
    Wischmeyer E; Döring F; Karschin A
    J Biol Chem; 1998 Dec; 273(51):34063-8. PubMed ID: 9852063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A region of the sulfonylurea receptor critical for a modulation of ATP-sensitive K(+) channels by G-protein betagamma-subunits.
    Wada Y; Yamashita T; Imai K; Miura R; Takao K; Nishi M; Takeshima H; Asano T; Morishita R; Nishizawa K; Kokubun S; Nukada T
    EMBO J; 2000 Sep; 19(18):4915-25. PubMed ID: 10990455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotides and phospholipids compete for binding to the C terminus of KATP channels.
    MacGregor GG; Dong K; Vanoye CG; Tang L; Giebisch G; Hebert SC
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2726-31. PubMed ID: 11880626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying K+ channel to K(+)-selective permeation.
    Reuveny E; Jan YN; Jan LY
    Biophys J; 1996 Feb; 70(2):754-61. PubMed ID: 8789092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for the time-dependent decay of inward currents through cloned Kir2.1 channels expressed in Xenopus oocytes.
    Shieh RC
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):241-52. PubMed ID: 10896715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of inwardly rectifying Kir2.x channels by the novel anti-cancer agent gambogic acid depends on both pore block and PIP
    Scherer D; Schworm B; Seyler C; Xynogalos P; Scholz EP; Thomas D; Katus HA; Zitron E
    Naunyn Schmiedebergs Arch Pharmacol; 2017 Jul; 390(7):701-710. PubMed ID: 28365825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.