BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 11173097)

  • 1. Phenyl propenoic side chain degradation of ferulic acid by Pycnoporus cinnabarinus - elucidation of metabolic pathways using [5-2H]-ferulic acid.
    Krings U; Pilawa S; Theobald C; Berger RG
    J Biotechnol; 2001 Feb; 85(3):305-14. PubMed ID: 11173097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus.
    Lesage-Meessen L; Delattre M; Haon M; Thibault JF; Ceccaldi BC; Brunerie P; Asther M
    J Biotechnol; 1996 Oct; 50(2-3):107-13. PubMed ID: 8987621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran.
    Lesage-Meessen L; Lomascolo A; Bonnin E; Thibault JF; Buleon A; Roller M; Asther M; Record E; Ceccaldi BC; Asther M
    Appl Biochem Biotechnol; 2002; 102-103(1-6):141-53. PubMed ID: 12396118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus.
    Zheng L; Zheng P; Sun Z; Bai Y; Wang J; Guo X
    Bioresour Technol; 2007 Mar; 98(5):1115-9. PubMed ID: 16782330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of biovanillin by one-step biotransformation using fungus Pycnoporous cinnabarinus.
    Tilay A; Bule M; Annapure U
    J Agric Food Chem; 2010 Apr; 58(7):4401-5. PubMed ID: 20297845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637.
    Ghosh S; Sachan A; Sen SK; Mitra A
    J Ind Microbiol Biotechnol; 2007 Feb; 34(2):131-8. PubMed ID: 17043806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decarboxylation of ferulic acid to 4-vinyl guaiacol by Streptomyces setonii.
    Max B; Carballo J; Cortés S; Domínguez JM
    Appl Biochem Biotechnol; 2012 Jan; 166(2):289-99. PubMed ID: 22081324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of 4-vinyl guaiacol as an intermediate in bioconversion of ferulic acid by Schizophyllum commune.
    Tsujiyama S; Ueno M
    Biosci Biotechnol Biochem; 2008 Jan; 72(1):212-5. PubMed ID: 18175910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioconversion of ferulic acid to vanillic acid by Halomonas elongata isolated from table-olive fermentation.
    Abdelkafi S; Sayadi S; Ben Ali Gam Z; Casalot L; Labat M
    FEMS Microbiol Lett; 2006 Sep; 262(1):115-20. PubMed ID: 16907747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of a new biotransformation pathway of p-coumaric acid into p-hydroxybenzaldehyde in Pycnoporus cinnabarinus.
    Estrada Alvarado I; Lomascolo A; Navarro D; Delattre M; Asther M; Lesage-Meessen L
    Appl Microbiol Biotechnol; 2001 Dec; 57(5-6):725-30. PubMed ID: 11778885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens.
    Narbad A; Gasson MJ
    Microbiology (Reading); 1998 May; 144 ( Pt 5)():1397-1405. PubMed ID: 9611814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116.
    Pérez-Rodríguez N; Pinheiro de Souza Oliveira R; Torrado Agrasar AM; Domínguez JM
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1677-1689. PubMed ID: 26476645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid colorimetric screening method for vanillic acid and vanillin-producing bacterial strains.
    Zamzuri NA; Abd-Aziz S; Rahim RA; Phang LY; Alitheen NB; Maeda T
    J Appl Microbiol; 2014 Apr; 116(4):903-10. PubMed ID: 24314059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol.
    Plaggenborg R; Overhage J; Loos A; Archer JA; Lessard P; Sinskey AJ; Steinbüchel A; Priefert H
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):745-55. PubMed ID: 16421716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of bacillus coagulans.
    Karmakar B; Vohra RM; Nandanwar H; Sharma P; Gupta KG; Sobti RC
    J Biotechnol; 2000 Jul; 80(3):195-202. PubMed ID: 10949310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Activation of Ferulic Acid Catabolic Pathways of Amycolatopsis sp. ATCC 39116 in Submerged and Surface Cultures.
    Contreras-Jácquez V; Rodríguez-González J; Mateos-Díaz JC; Valenzuela-Soto EM; Asaff-Torres A
    Appl Biochem Biotechnol; 2020 Oct; 192(2):494-516. PubMed ID: 32399842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 18. A proteomic analysis of ferulic acid metabolism in Amycolatopsis sp. ATCC 39116.
    Meyer F; Netzer J; Meinert C; Voigt B; Riedel K; Steinbüchel A
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):6119-6142. PubMed ID: 29766243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Vine-Trimming Wastes as Carrier for Amycolatopsis sp. to Produce Vanillin, Vanillyl Alcohol, and Vanillic Acid.
    Castañón-Rodríguez JF; Pérez-Rodríguez N; de Souza Oliveira RP; Aguilar-Uscanga MG; Domínguez JM
    Curr Microbiol; 2016 Oct; 73(4):561-8. PubMed ID: 27431730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of ferulic acid to vanillin using a fed-batch solid-liquid two-phase partitioning bioreactor.
    Ma XK; Daugulis AJ
    Biotechnol Prog; 2014; 30(1):207-14. PubMed ID: 24167066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.