These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11173268)

  • 1. Efflux transport systems for drugs at the blood-brain barrier and blood-cerebrospinal fluid barrier (Part 2).
    Kusuhara H; Sugiyama Y
    Drug Discov Today; 2001 Feb; 6(4):206-212. PubMed ID: 11173268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efflux transport systems for drugs at the blood-brain barrier and blood-cerebrospinal fluid barrier (Part 1).
    Kusuhara H; Sugiyama Y
    Drug Discov Today; 2001 Feb; 6(3):150-156. PubMed ID: 11165188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles.
    Hladky SB; Barrand MA
    Fluids Barriers CNS; 2016 Oct; 13(1):19. PubMed ID: 27799072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases.
    Löscher W; Potschka H
    Prog Neurobiol; 2005 May; 76(1):22-76. PubMed ID: 16011870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Multi-disciplinary research approaches on the brain barrier transport system, a dynamic interface].
    Tachikawa M; Uchida Y; Terasaki T
    Brain Nerve; 2013 Feb; 65(2):121-36. PubMed ID: 23399670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SLC and ABC Transporters: Expression, Localization, and Species Differences at the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers.
    Morris ME; Rodriguez-Cruz V; Felmlee MA
    AAPS J; 2017 Sep; 19(5):1317-1331. PubMed ID: 28664465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detoxification systems, passive and specific transport for drugs at the blood-CSF barrier in normal and pathological situations.
    Strazielle N; Khuth ST; Ghersi-Egea JF
    Adv Drug Deliv Rev; 2004 Oct; 56(12):1717-40. PubMed ID: 15381331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological significance of prostaglandin E2 and D2 transport at the brain barriers.
    Tachikawa M; Hosoya K; Terasaki T
    Adv Pharmacol; 2014; 71():337-60. PubMed ID: 25307222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of cationic drug-sensitive transport systems at the blood-cerebrospinal fluid barrier in para-tyramine elimination from rat brain.
    Akanuma SI; Yamazaki Y; Kubo Y; Hosoya KI
    Fluids Barriers CNS; 2018 Jan; 15(1):1. PubMed ID: 29307307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entry of oximes into the brain: a review.
    Lorke DE; Kalasz H; Petroianu GA; Tekes K
    Curr Med Chem; 2008; 15(8):743-53. PubMed ID: 18393843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and biochemical analysis of carrier-mediated efflux of drugs through the blood-brain and blood-cerebrospinal fluid barriers: importance in the drug delivery to the brain.
    Sugiyama Y; Kusuhara H; Suzuki H
    J Control Release; 1999 Nov; 62(1-2):179-86. PubMed ID: 10518649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of transporters and enzymes from blood-cerebrospinal fluid barrier and brain parenchyma on CNS drug uptake.
    Wang Q; Zuo Z
    Expert Opin Drug Metab Toxicol; 2018 Sep; 14(9):961-972. PubMed ID: 30118608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane transporter proteins: a challenge for CNS drug development.
    Girardin F
    Dialogues Clin Neurosci; 2006; 8(3):311-21. PubMed ID: 17117613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vivo and in-vitro evidence of a carrier-mediated efflux transport system for oestrone-3-sulphate across the blood-cerebrospinal fluid barrier.
    Kitazawa T; Hosoya K; Takahashi T; Sugiyama Y; Terasaki T
    J Pharm Pharmacol; 2000 Mar; 52(3):281-8. PubMed ID: 10757415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Kinetic analysis of the disposition of hydrophilic drugs in the central nervous system (CNS): prediction of the CNS disposition from the transport properties in the blood-brain and blood-cerebrospinal fluid barriers].
    Suzuki H; Sugiyama Y
    Yakugaku Zasshi; 1994 Dec; 114(12):950-71. PubMed ID: 7869236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Brain barriers. Part II. Blood/cerebrospinal fluid barrier and cerebrospinal fluid /brain tissue barrier].
    Pakulski C; Dybkowska K; Drobnik L
    Neurol Neurochir Pol; 1998; 32(1):133-9. PubMed ID: 9631385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transporter-mediated permeation of drugs across the blood-brain barrier.
    Tamai I; Tsuji A
    J Pharm Sci; 2000 Nov; 89(11):1371-88. PubMed ID: 11015683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules.
    Strazielle N; Ghersi-Egea JF
    Mol Pharm; 2013 May; 10(5):1473-91. PubMed ID: 23298398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the unbound brain concentration of P-glycoprotein substrates or nonsubstrates by a serial cerebrospinal fluid sampling technique in rats.
    Mariappan TT; Kurawattimath V; Gautam SS; Kulkarni CP; Kallem R; Taskar KS; Marathe PH; Mandlekar S
    Mol Pharm; 2014 Feb; 11(2):477-85. PubMed ID: 24380373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The distribution of the HIV protease inhibitor, ritonavir, to the brain, cerebrospinal fluid, and choroid plexuses of the guinea pig.
    Anthonypillai C; Sanderson RN; Gibbs JE; Thomas SA
    J Pharmacol Exp Ther; 2004 Mar; 308(3):912-20. PubMed ID: 14634041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.