These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11173496)

  • 1. An efficient method for solving RNA structures: MAD phasing by replacing magnesium with zinc.
    Ennifar E; Walter P; Dumas P
    Acta Crystallogr D Biol Crystallogr; 2001 Feb; 57(Pt 2):330-2. PubMed ID: 11173496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium derivatization of nucleic acids for X-ray crystal-structure and function studies.
    Sheng J; Huang Z
    Chem Biodivers; 2010 Apr; 7(4):753-85. PubMed ID: 20397215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soaking Hexammine Cations into RNA Crystals to Obtain Derivatives for Phasing Diffraction Data.
    Batey RT; Kieft JS
    Methods Mol Biol; 2016; 1320():219-32. PubMed ID: 26227046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray-induced debromination of nucleic acids at the Br K absorption edge and implications for MAD phasing.
    Ennifar E; Carpentier P; Ferrer JL; Walter P; Dumas P
    Acta Crystallogr D Biol Crystallogr; 2002 Aug; 58(Pt 8):1262-8. PubMed ID: 12136136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A practical phasing procedure using the MAD method without the aid of XAFS measurements: successful solution in the structure determination of the outer-membrane lipoprotein carrier LolA.
    Takeda K; Miyatake H; Yokota N; Matsuyama S; Tokuda H; Miki K
    Acta Crystallogr D Biol Crystallogr; 2003 Aug; 59(Pt 8):1440-6. PubMed ID: 12876347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general strategy to solve the phase problem in RNA crystallography.
    Keel AY; Rambo RP; Batey RT; Kieft JS
    Structure; 2007 Jul; 15(7):761-72. PubMed ID: 17637337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives.
    Robertson MP; Scott WG
    Acta Crystallogr D Biol Crystallogr; 2008 Jul; D64(Pt 7):738-44. PubMed ID: 18566509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The magic triangle goes MAD: experimental phasing with a bromine derivative.
    Beck T; Gruene T; Sheldrick GM
    Acta Crystallogr D Biol Crystallogr; 2010 Apr; 66(Pt 4):374-80. PubMed ID: 20382990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct-method-aided phasing of MAD data.
    Gu YX; Liu YD; Hao Q; Ealick SE; Fan HF
    Acta Crystallogr D Biol Crystallogr; 2001 Feb; 57(Pt 2):250-3. PubMed ID: 11173471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Away from the edge: SAD phasing from the sulfur anomalous signal measured in-house with chromium radiation.
    Yang C; Pflugrath JW; Courville DA; Stence CN; Ferrara JD
    Acta Crystallogr D Biol Crystallogr; 2003 Nov; 59(Pt 11):1943-57. PubMed ID: 14573949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Quick and the Dead: A Guide to Fast Phasing of Small Ribozyme and Riboswitch Crystal Structures.
    Jenkins JL; Wedekind JE
    Methods Mol Biol; 2016; 1490():265-80. PubMed ID: 27665605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of chemically modified nucleotides to determine a 62-nucleotide RNA crystal structure: a survey of phosphorothioates, Br, Pt and Hg.
    Correll CC; Freeborn B; Moore PB; Steitz TA
    J Biomol Struct Dyn; 1997 Oct; 15(2):165-72. PubMed ID: 9399146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser.
    Hunter MS; Yoon CH; DeMirci H; Sierra RG; Dao EH; Ahmadi R; Aksit F; Aquila AL; Ciftci H; Guillet S; Hayes MJ; Lane TJ; Liang M; Lundström U; Koglin JE; Mgbam P; Rao Y; Zhang L; Wakatsuki S; Holton JM; Boutet S
    Nat Commun; 2016 Nov; 7():13388. PubMed ID: 27811937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MAD phasing with krypton.
    Cohen A; Ellis P; Kresge N; Soltis SM
    Acta Crystallogr D Biol Crystallogr; 2001 Feb; 57(Pt 2):233-8. PubMed ID: 11173469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in multiple wavelength anomalous diffraction crystallography.
    Ealick SE
    Curr Opin Chem Biol; 2000 Oct; 4(5):495-9. PubMed ID: 11006535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of SAD and two-wavelength MAD phasing for radiation-damaged Se-MET crystals.
    González A
    J Synchrotron Radiat; 2007 Jan; 14(Pt 1):43-50. PubMed ID: 17211071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous X-ray diffraction with soft X-ray synchrotron radiation.
    Carpentier P; Berthet-Colominas C; Capitan M; Chesne ML; Fanchon E; Lequien S; Stuhrmann H; Thiaudière D; Vicat J; Zielinski P; Kahn R
    Cell Mol Biol (Noisy-le-grand); 2000 Jul; 46(5):915-35. PubMed ID: 10976874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phasing power at the K absorption edge of organic arsenic.
    Retailleau P; Prangé T
    Acta Crystallogr D Biol Crystallogr; 2003 May; 59(Pt 5):887-96. PubMed ID: 12777806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Faster data-collection strategies for structure determination using anomalous dispersion.
    González A
    Acta Crystallogr D Biol Crystallogr; 2003 Feb; 59(Pt 2):315-22. PubMed ID: 12554942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray crystallographic studies of metalloproteins.
    Volbeda A
    Methods Mol Biol; 2014; 1122():189-206. PubMed ID: 24639261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.