BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11173507)

  • 21. Role of alphaArg145 and betaArg263 in the active site of penicillin acylase of Escherichia coli.
    Alkema WB; Prins AK; de Vries E; Janssen DB
    Biochem J; 2002 Jul; 365(Pt 1):303-9. PubMed ID: 12071857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient cascade synthesis of ampicillin from penicillin G potassium salt using wild and mutant penicillin G acylase from Alcaligenes faecalis.
    Deng S; Ma X; Su E; Wei D
    J Biotechnol; 2016 Feb; 219():142-8. PubMed ID: 26732414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory effects in the side reactions occurring during the enzymic synthesis of amoxicillin: p-hydroxyphenylglycine methyl ester and amoxicillin hydrolysis.
    Gonçalves LR; Fernandez-Lafuente R; Guisan JM; Giordano RL; Giordano RC
    Biotechnol Appl Biochem; 2003 Aug; 38(Pt 1):77-85. PubMed ID: 12689339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Saturation mutagenesis reveals the importance of residues alphaR145 and alphaF146 of penicillin acylase in the synthesis of beta-lactam antibiotics.
    Jager SA; Shapovalova IV; Jekel PA; Alkema WB; Svedas VK; Janssen DB
    J Biotechnol; 2008 Jan; 133(1):18-26. PubMed ID: 17933411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced production of 6-aminopenicillanic acid in aqueous methyl isobutyl ketone system with immobilized penicillin G acylase.
    Fang SG; Qiang T; Liu RJ; Xu XM; Zhang YW
    Prep Biochem Biotechnol; 2010; 40(1):38-45. PubMed ID: 20024793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of 6-aminopenicillanic acid (6-APA) production by using a new immobilized penicillin acylase.
    Torres-Bacete J; Arroyo M; Torres-Guzmán R; de La Mata I; Castillón MP; Acebal C
    Biotechnol Appl Biochem; 2000 Dec; 32(3):173-7. PubMed ID: 11115389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A kinetic study of synthesis of amoxicillin using penicillin G acylase immobilized on agarose.
    Gonçalves LR; Fernandez-Lafuente R; Guisán JM; Giordano RL
    Appl Biochem Biotechnol; 2000; 84-86():931-45. PubMed ID: 10849847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-pot, two-step enzymatic synthesis of amoxicillin by complexing with Zn2+.
    Zhang YW; Liu RJ; Xu XM
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):49-55. PubMed ID: 20567815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymatic synthesis of ampicillin: a chemometric optimization.
    Boccù E; Ebert C; Gardossi L; Gianferrara T; Zacchigna M; Linda P
    Farmaco; 1991 Apr; 46(4):565-77. PubMed ID: 1930553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of affinity and pseudo-affinity adsorption processes for penicillin acylase purification.
    Fonseca LP; Cabral JM
    Bioseparation; 1996; 6(5):293-302. PubMed ID: 9210349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and purification of penicillin G acylase obtained from Escherichia coli (NCIM-2400) and immobilisation on Eupergit C for the production of 6 amino penicillanic acid.
    Hegde MM; Thadani SB; Singh U; Naik SR
    Hindustan Antibiot Bull; 1997; 39(1-4):1-10. PubMed ID: 10386011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A process to produce penicillin G acylase by surface-adhesion fermentation using Mucor griseocyanus to obtain 6-aminopenicillanic acid by penicillin G hydrolysis.
    Martínez-Hernández JL; Mata-Gómez MA; Aguilar-González CN; Ilyina A
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2045-53. PubMed ID: 19768388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Site-directed chemical conversion of serine to cysteine in penicillin acylase from Escherichia coli ATCC 11105. Effect on conformation and catalytic activity.
    Slade A; Horrocks AJ; Lindsay CD; Dunbar B; Virden R
    Eur J Biochem; 1991 Apr; 197(1):75-80. PubMed ID: 1849824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Penicillin acylase catalyzed synthesis of penicillin-G from substrates anchored in cyclodextrins.
    Prabhu KS; Ramadoss CS
    Indian J Biochem Biophys; 2000 Feb; 37(1):6-12. PubMed ID: 10983407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Directed evolution of a penicillin V acylase from Bacillus sphaericus to improve its catalytic efficiency for 6-APA production.
    Xu G; Zhao Q; Huang B; Zhou J; Cao F
    Enzyme Microb Technol; 2018 Dec; 119():65-70. PubMed ID: 30243389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A breakthrough in enzyme technology to fight penicillin resistance-industrial application of penicillin amidase.
    Buchholz K
    Appl Microbiol Biotechnol; 2016 May; 100(9):3825-39. PubMed ID: 26960323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ mixed donor synthesis of ampicillin with ethylene glycol co-solvent.
    Deaguero AL; Bommarius AS
    Biotechnol Bioeng; 2014 May; 111(5):1054-8. PubMed ID: 24258338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving the diastereoselectivity of penicillin G acylase for ampicillin synthesis from racemic substrates.
    Deaguero AL; Blum JK; Bommarius AS
    Protein Eng Des Sel; 2012 Mar; 25(3):135-44. PubMed ID: 22271751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetically controlled semisynthesis of beta-lactam antibiotics and peptides.
    Kasche V; Haufler U; Riechmann L
    Ann N Y Acad Sci; 1984; 434():99-105. PubMed ID: 6098212
    [No Abstract]   [Full Text] [Related]  

  • 40. Substrate specificity of penicillin amidase from E. coli.
    Margolin AL; Svedas VK; Berezin IV
    Biochim Biophys Acta; 1980 Dec; 616(2):283-9. PubMed ID: 7011386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.