These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11173997)

  • 1. Flow in elliptical vessels calculated for a physiological waveform.
    Robertson MB; Köhler U; Hoskins PR; Marshall I
    J Vasc Res; 2001; 38(1):73-82. PubMed ID: 11173997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological flow waveform in a rigid elliptical vessel.
    Robertson MB; Köhler U
    IMA J Math Appl Med Biol; 2001 Mar; 18(1):77-98. PubMed ID: 11339339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsatile flow in tubes of elliptic cross sections.
    Haslam M; Zamir M
    Ann Biomed Eng; 1998; 26(5):780-7. PubMed ID: 9779950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new ultrasonographic instrument for measuring vessel wall shear stress.
    Bardelli M; Carretta R; Dotti D; Fabris B; Fischetti F; Cominotto F; Ussi D; Calci M; Candido R
    Boll Soc Ital Biol Sper; 1994 Apr; 70(4):97-104. PubMed ID: 8086161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional display of calculated velocity profiles for physiological flow waveforms.
    Shehada RE; Cobbold RS; Johnston KW; Aarnink R
    J Vasc Surg; 1993 Apr; 17(4):656-60. PubMed ID: 8464082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of blood viscoelasticity on pulsatile flow in stationary and axially moving tubes.
    Sharp MK; Thurston GB; Moore JE
    Biorheology; 1996; 33(3):185-208. PubMed ID: 8935179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radial artery wall shear stress evaluation in patients with arteriovenous fistula for hemodialysis access.
    Remuzzi A; Ene-Iordache B; Mosconi L; Bruno S; Anghileri A; Antiga L; Remuzzi G
    Biorheology; 2003; 40(1-3):423-30. PubMed ID: 12454436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between secondary velocities, flow pulsation and vessel morphology in the common carotid artery.
    Tortoli P; Michelassi V; Bambi G; Guidi F; Righi D
    Ultrasound Med Biol; 2003 Mar; 29(3):407-15. PubMed ID: 12706192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic accurate non-invasive quantitation of blood flow, cross-sectional vessel area, and wall shear stress by modelling of magnetic resonance velocity data.
    Oyre S; Paaske WP; Ringgaard S; Kozerke S; Erlandsen M; Boesiger P; Pedersen EM
    Eur J Vasc Endovasc Surg; 1998 Dec; 16(6):517-24. PubMed ID: 9894493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological flow analysis in significant human coronary artery stenoses.
    Banerjee RK; Back LH; Back MR; Cho YI
    Biorheology; 2003; 40(4):451-76. PubMed ID: 12775911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of PC MRI velocity maps: pulsatile flow in cylindrical vessels.
    Robertson MB; Köhler U; Hoskins PR; Marshall I
    Magn Reson Imaging; 2001 Jun; 19(5):685-95. PubMed ID: 11672627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A noninvasive method to estimate wall shear rate using ultrasound.
    Brands PJ; Hoeks AP; Hofstra L; Reneman RS
    Ultrasound Med Biol; 1995; 21(2):171-85. PubMed ID: 7571127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II--pulsatile flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):319-28. PubMed ID: 12186711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-vivo coronary flow profiling based on biplane angiograms: influence of geometric simplifications on the three-dimensional reconstruction and wall shear stress calculation.
    Wellnhofer E; Goubergrits L; Kertzscher U; Affeld K
    Biomed Eng Online; 2006 Jun; 5():39. PubMed ID: 16774680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of pulsatile wall shear stress in compliant arteries: numerical model, validation and experimental data.
    Salvucci FP; Perazzo CA; Barra JG; Armentano RL
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2847-50. PubMed ID: 19964274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-pressure drop measurement and calculation in a tapered femoral artery of a dog.
    Banerjee RK; Back LH; Cho YI
    Biorheology; 1995; 32(6):655-84. PubMed ID: 8857355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive assessment of wall-shear rate and vascular elasticity using combined ARFI/SWEI/spectral Doppler imaging system.
    Dumont DM; Doherty JR; Trahey GE
    Ultrason Imaging; 2011 Jul; 33(3):165-88. PubMed ID: 21842581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow structures and red blood cell dynamics in arteriole of dilated or constricted cross section.
    Gambaruto AM
    J Biomech; 2016 Jul; 49(11):2229-2240. PubMed ID: 26822224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A new hemodynamic endothelial approach using non-invasive evaluation of instantaneous wall shear in human arteries. Application in arterial hypertension].
    Colin JM; Del-Pino M; Aouate JP; Flaud P; Levenson J; Simon A
    Arch Mal Coeur Vaiss; 1990 Jul; 83(8):1201-3. PubMed ID: 2148077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.