These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 11174689)

  • 1. Response of muscle proprioceptors to spinal manipulative-like loads in the anesthetized cat.
    Pickar JG; Wheeler JD
    J Manipulative Physiol Ther; 2001 Jan; 24(1):2-11. PubMed ID: 11174689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of spinal manipulation duration on low threshold mechanoreceptors in lumbar paraspinal muscles: a preliminary report.
    Sung PS; Kang YM; Pickar JG
    Spine (Phila Pa 1976); 2005 Jan; 30(1):115-22. PubMed ID: 15626991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of lumbar paraspinal muscles spindles is greater to spinal manipulative loading compared with slower loading under length control.
    Pickar JG; Sung PS; Kang YM; Ge W
    Spine J; 2007; 7(5):583-95. PubMed ID: 17905321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paraspinal muscle spindle responses to the duration of a spinal manipulation under force control.
    Pickar JG; Kang YM
    J Manipulative Physiol Ther; 2006 Jan; 29(1):22-31. PubMed ID: 16396726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of chemosensitive afferents from multifidus muscle does not sensitize multifidus muscle spindles to vertebral loads in the lumbar spine of the cat.
    Kang YM; Wheeler JD; Pickar JG
    Spine (Phila Pa 1976); 2001 Jul; 26(14):1528-36. PubMed ID: 11462081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vivo preparation for investigating neural responses to controlled loading of a lumbar vertebra in the anesthetized cat.
    Pickar JG
    J Neurosci Methods; 1999 Jul; 89(2):87-96. PubMed ID: 10491938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time course for the development of muscle history in lumbar paraspinal muscle spindles arising from changes in vertebral position.
    Ge W; Pickar JG
    Spine J; 2008; 8(2):320-8. PubMed ID: 17938002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of stimulation of Golgi tendon organs and spindle receptors from hindlimb extensor muscles on supraspinal descending inhibitory mechanisms.
    Magherini PC; Pompeiano O; Seguin JJ
    Arch Ital Biol; 1973 Feb; 111(1):24-57. PubMed ID: 18843825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural responses to the mechanical characteristics of high velocity, low amplitude spinal manipulation: Effect of specific contact site.
    Reed WR; Long CR; Kawchuk GN; Pickar JG
    Man Ther; 2015 Dec; 20(6):797-804. PubMed ID: 25841562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural responses to the mechanical parameters of a high-velocity, low-amplitude spinal manipulation: effect of preload parameters.
    Reed WR; Long CR; Kawchuk GN; Pickar JG
    J Manipulative Physiol Ther; 2014 Feb; 37(2):68-78. PubMed ID: 24387888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertebral position alters paraspinal muscle spindle responsiveness in the feline spine: effect of positioning duration.
    Ge W; Long CR; Pickar JG
    J Physiol; 2005 Dec; 569(Pt 2):655-65. PubMed ID: 16210357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Responses to Physical Characteristics of a High-velocity, Low-amplitude Spinal Manipulation: Effect of Thrust Direction.
    Reed WR; Long CR; Kawchuk GN; Sozio RS; Pickar JG
    Spine (Phila Pa 1976); 2018 Jan; 43(1):1-9. PubMed ID: 26863348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of thrust amplitude and duration of high-velocity, low-amplitude spinal manipulation on lumbar muscle spindle responses to vertebral position and movement.
    Cao DY; Reed WR; Long CR; Kawchuk GN; Pickar JG
    J Manipulative Physiol Ther; 2013 Feb; 36(2):68-77. PubMed ID: 23499141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of changes in pH on the afferent impulse activity of isolated cat muscle spindles.
    Fischer M; Schäfer SS
    Brain Res; 2005 May; 1043(1-2):163-78. PubMed ID: 15862530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proprioception in the extraocular muscles of mammals and man.
    Blumer R; Konacki KZ; Streicher J; Hoetzenecker W; Blumer MJ; Lukas JR
    Strabismus; 2006 Jun; 14(2):101-6. PubMed ID: 16760116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Position sensitivity of feline paraspinal muscle spindles to vertebral movement in the lumbar spine.
    Cao DY; Pickar JG; Ge W; Ianuzzi A; Khalsa PS
    J Neurophysiol; 2009 Apr; 101(4):1722-9. PubMed ID: 19164108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of Paraspinal Muscle Spindle Response to Mechanically Assisted Spinal Manipulation: A Preliminary Report.
    Reed WR; Pickar JG; Sozio RS; Liebschner MAK; Little JW; Gudavalli MR
    J Manipulative Physiol Ther; 2017; 40(6):371-380. PubMed ID: 28633885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurophysiologic response to intraoperative lumbosacral spinal manipulation.
    Colloca CJ; Keller TS; Gunzburg R; Vandeputte K; Fuhr AW
    J Manipulative Physiol Ther; 2000 Sep; 23(7):447-57. PubMed ID: 11004648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The dependence of the discharge frequency of muscle spindle afferents in the cat on the direction of the change in muscle loading].
    Cherkasskiĭ VL; Kostiukov AI
    Neirofiziologiia; 1990; 22(6):840-3. PubMed ID: 2151462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of supernumerary muscle spindles at the expense of Golgi tendon organs in ER81-deficient mice.
    Kucera J; Cooney W; Que A; Szeder V; Stancz-Szeder H; Walro J
    Dev Dyn; 2002 Mar; 223(3):389-401. PubMed ID: 11891988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.