These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 11175884)

  • 21. Visual control of walking velocity.
    François M; Morice AH; Bootsma RJ; Montagne G
    Neurosci Res; 2011 Jun; 70(2):214-9. PubMed ID: 21345354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Forward optic flow is prioritised in visual awareness independently of walking direction.
    Motyka P; Akbal M; Litwin P
    PLoS One; 2021; 16(5):e0250905. PubMed ID: 33945563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reliability and relative weighting of visual and nonvisual information for perceiving direction of self-motion during walking.
    Saunders JA
    J Vis; 2014 Mar; 14(3):24. PubMed ID: 24648194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optic flow contribution to locomotion adjustments in obstacle avoidance.
    Pinheiro Menuchi MR; Bucken Gobbi LT
    Motor Control; 2012 Oct; 16(4):506-20. PubMed ID: 23162065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multisensory control of a straight locomotor trajectory.
    Hanna M; Fung J; Lamontagne A
    J Vestib Res; 2017; 27(1):17-25. PubMed ID: 28387689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The coupling of vision with locomotion in cortical blindness.
    Pelah A; Barbur J; Thurrell A; Hock HS
    Vision Res; 2015 May; 110(Pt B):286-94. PubMed ID: 24832646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation to conflicting visual and physical heading directions during walking.
    Saunders JA; Durgin FH
    J Vis; 2011 Mar; 11(3):. PubMed ID: 21427210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visual control of action without retinal optic flow.
    Loomis JM; Beall AC; Macuga KL; Kelly JW; Smith RS
    Psychol Sci; 2006 Mar; 17(3):214-21. PubMed ID: 16507061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The perceptual control of goal-directed locomotion: a common control architecture for interception and navigation?
    Chardenon A; Montagne G; Laurent M; Bootsma RJ
    Exp Brain Res; 2004 Sep; 158(1):100-8. PubMed ID: 15042262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of optic flow speed and lateral flow asymmetry on locomotion in younger and older adults: a virtual reality study.
    Chou YH; Wagenaar RC; Saltzman E; Giphart JE; Young D; Davidsdottir R; Cronin-Golomb A
    J Gerontol B Psychol Sci Soc Sci; 2009 Mar; 64(2):222-31. PubMed ID: 19276239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optic flow dominates visual scene polarity in causing adaptive modification of locomotor trajectory.
    Nomura Y; Mulavara AP; Richards JT; Brady R; Bloomberg JJ
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):624-31. PubMed ID: 16216478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A faithful internal representation of walking movements in the Drosophila visual system.
    Fujiwara T; Cruz TL; Bohnslav JP; Chiappe ME
    Nat Neurosci; 2017 Jan; 20(1):72-81. PubMed ID: 27798632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intercepting a moving target: On-line or model-based control?
    Zhao H; Warren WH
    J Vis; 2017 May; 17(5):12. PubMed ID: 28538992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of divided attention on visual control of steering toward a goal.
    Chen R; Li L
    J Exp Psychol Hum Percept Perform; 2022 Jun; 48(6):597-612. PubMed ID: 35446087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postural adjustments induced by simulated motion of differently structured environments.
    van Asten WN; Gielen CC; Denier van der Gon JJ
    Exp Brain Res; 1988; 73(2):371-83. PubMed ID: 3215313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of aging on visual reweighting during locomotion.
    Berard J; Fung J; Lamontagne A
    Clin Neurophysiol; 2012 Jul; 123(7):1422-8. PubMed ID: 22204920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of detection thresholds for redirected walking techniques.
    Steinicke F; Bruder G; Jerald J; Frenz H; Lappe M
    IEEE Trans Vis Comput Graph; 2010; 16(1):17-27. PubMed ID: 19910658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance of redirected walking algorithms in a constrained virtual world.
    Hodgson E; Bachmann E; Thrash T
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):579-87. PubMed ID: 24650985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms.
    Hicheur H; Vieilledent S; Berthoz A
    Neurosci Lett; 2005 Jul 22-29; 383(1-2):87-92. PubMed ID: 15936517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How humans use visual optic flow to regulate stepping during walking.
    Salinas MM; Wilken JM; Dingwell JB
    Gait Posture; 2017 Sep; 57():15-20. PubMed ID: 28570860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.