These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11176284)

  • 41. Circle of Willis in newborns: color Doppler imaging of 53 healthy full-term infants.
    Mitchell DG; Merton DA; Mirsky PJ; Needleman L
    Radiology; 1989 Jul; 172(1):201-5. PubMed ID: 2662251
    [TBL] [Abstract][Full Text] [Related]  

  • 42. One-dimensional and three-dimensional models of cerebrovascular flow.
    Moore SM; Moorhead KT; Chase JG; David T; Fink J
    J Biomech Eng; 2005 Jun; 127(3):440-9. PubMed ID: 16060350
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of arterial hypoxaemia, hypercapnia, and changes in cerebral perfusion pressure on mean cerebrospinal fluid and sagittal sinus pressure.
    Hamer J; Alberti E; Hoyer S
    Acta Neurochir (Wien); 1974; 30(3-4):167-79. PubMed ID: 4432782
    [No Abstract]   [Full Text] [Related]  

  • 44. Interactions of brain, blood, and CSF: a novel mathematical model of cerebral edema.
    Doron O; Zadka Y; Barnea O; Rosenthal G
    Fluids Barriers CNS; 2021 Sep; 18(1):42. PubMed ID: 34530863
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [On changes in pulsatile blood flow in arteries of the cranial base].
    Moskalenka IuE; Filanovskaia TP
    Fiziol Zh SSSR Im I M Sechenova; 1967 Nov; 53(11):1387-92. PubMed ID: 5615260
    [No Abstract]   [Full Text] [Related]  

  • 46. [Hemodynamic adaptations in proximal cerebrovascular occlusion].
    De Ley G
    Verh K Acad Geneeskd Belg; 1990; 52(5):413-54. PubMed ID: 2127647
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hemodynamic effect of cerebral vasospasm in humans: a modeling study.
    Lodi CA; Ursino M
    Ann Biomed Eng; 1999; 27(2):257-73. PubMed ID: 10199702
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cerebral circulation demystified.
    Hickey JV
    AACN Clin Issues Crit Care Nurs; 1991 Nov; 2(4):657-64. PubMed ID: 1954054
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pathophysiology of unilateral high-grade carotid artery stenosis: evaluation of intracranial haemodynamics by analysis of velocity waveforms from the middle cerebral artery.
    Fürst H; Hartl WH; Jansen I; Fink B; Piepgras A; Lauterjung L; Schildberg FW
    Clin Sci (Lond); 1992 Sep; 83(3):357-66. PubMed ID: 1327656
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Autoregulating Cerebral Tissue Selfishly Exploits Collateral Flow Routes Through the Circle of Willis.
    Kennedy McConnell FA; Payne SJ
    Acta Neurochir Suppl; 2018; 126():275-279. PubMed ID: 29492574
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Circle of Willis Collateral During Temporary Internal Carotid Artery Occlusion II: Observations From Computed Tomography Angiography.
    Wang BH; Leung A; Lownie SP
    Can J Neurol Sci; 2016 Jul; 43(4):538-42. PubMed ID: 27027491
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cerebrospinal fluid production and its relationship to cerebral metabolism and cerebral blood flow.
    BERING EA
    Am J Physiol; 1959 Oct; 197():825-8. PubMed ID: 13799470
    [No Abstract]   [Full Text] [Related]  

  • 54. The hemodynamic effect of bilateral carotid artery ligation and the morphometry of the main communicating circuit in normotensive and spontaneously hypertensive rats.
    Fredriksson K; Nordborg C; Johansson BB
    Acta Physiol Scand; 1984 Jul; 121(3):241-7. PubMed ID: 6475550
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reactivity of cerebral blood flow to carbon dioxide in various types of ischemic cerebrovascular disease: evaluation by the transcranial Doppler method.
    Maeda H; Matsumoto M; Handa N; Hougaku H; Ogawa S; Itoh T; Tsukamoto Y; Kamada T
    Stroke; 1993 May; 24(5):670-5. PubMed ID: 8488521
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cerebral vascular resistance changes in response to cerebrospinal fluid pressure.
    Shulman K; Verdier GR
    Am J Physiol; 1967 Nov; 213(5):1084-8. PubMed ID: 6054853
    [No Abstract]   [Full Text] [Related]  

  • 57. Investigations of flow and pressure distributions in physical model of the circle of Willis.
    Cieslicki K; Ciesla D
    J Biomech; 2005 Nov; 38(11):2302-10. PubMed ID: 16154418
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of cross-circulation through circle of Willis using an ultrasonic Doppler technique. Part I. Comparison between blood flow velocity by ultrasonic Doppler flowmetry and angiogram.
    Yoneda S; Nukada T; Kimura K; Tanaka K; Ashida K; Asai T; Etani H; Imaizumi M; Abe H
    Stroke; 1981; 12(4):478-84. PubMed ID: 6458930
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Coexistence of asymmetry of the lumen of vessels and aneurysm at the base of the brain].
    Gutowska-Maciagowa A; Kaluza J
    Neurol Neurochir Pol; 1975; 9(2):223-8. PubMed ID: 1153056
    [No Abstract]   [Full Text] [Related]  

  • 60. Clinical applicability of a mathematical model in assessing the functional ability of the communicating arteries of the circle of Willis.
    Orosz L; Hoksbergen AW; Molnár C; Siró P; Cassot F; Marc-Vergnes JP; Fülesdi B
    J Neurol Sci; 2009 Dec; 287(1-2):94-9. PubMed ID: 19758603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.