These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11176284)

  • 61. [The effect of nitroglycerin on cerebrovascular circulation, cerebrovascular CO2-reactivity and blood flow rate in basal cerebral arteries].
    Weyland A; Grüne F; Buhre W; Kazmaier S; Stephan H; Sonntag H
    Anaesthesist; 1996 Nov; 45(11):1037-44. PubMed ID: 9012298
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evaluation of posterior cerebral artery blood flow with transcranial Doppler sonography: value and risk of common carotid artery compression.
    Jatuzis D; Zachrisson H; Blomstrand C; Ekholm S; Holm J; Volkmann R
    J Clin Ultrasound; 2000; 28(9):452-60. PubMed ID: 11056022
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Spect measurements of regional cerebral perfusion and carbondioxide reactivity: correlation with cerebral collaterals in internal carotid artery occlusive disease.
    de Boorder MJ; van der Grond J; van Dongen AJ; Klijn CJ; Jaap Kappelle L; Van Rijk PP; Hendrikse J
    J Neurol; 2006 Oct; 253(10):1285-91. PubMed ID: 17063318
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Simulation of cerebral hemodynamics for preoperative risk assessment.
    Roessler FC; Reith W; Siegel G
    Brain Res; 2006 Nov; 1118(1):183-91. PubMed ID: 16996490
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Differential blood flow responses to CO₂ in human internal and external carotid and vertebral arteries.
    Sato K; Sadamoto T; Hirasawa A; Oue A; Subudhi AW; Miyazawa T; Ogoh S
    J Physiol; 2012 Jul; 590(14):3277-90. PubMed ID: 22526884
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Computational Modeling of Neonatal Cardiopulmonary Bypass Hemodynamics With Full Circle of Willis Anatomy.
    Piskin S; Ündar A; Pekkan K
    Artif Organs; 2015 Oct; 39(10):E164-75. PubMed ID: 25940836
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The role of the circle of Willis in internal carotid artery stenosis and anatomical variations: a computational study based on a patient-specific three-dimensional model.
    Zhu G; Yuan Q; Yang J; Yeo JH
    Biomed Eng Online; 2015 Nov; 14():107. PubMed ID: 26608827
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of the circle of Willis on leptomeningeal collateral flow in anterior circulation occlusive stroke: Friend or foe?
    Millesi K; Mutzenbach JS; Killer-Oberpfalzer M; Hecker C; Machegger L; Bubel N; Ramesmayer C; Pikija S
    J Neurol Sci; 2019 Jan; 396():69-75. PubMed ID: 30419369
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Qualitative phase contrast MRA in the normal and abnormal circle of Willis.
    Ross MR; Pelc NJ; Enzmann DR
    AJNR Am J Neuroradiol; 1993; 14(1):19-25. PubMed ID: 8427087
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Coupled Lumped-Parameter and Distributed Network Model for Cerebral Pulse-Wave Hemodynamics.
    Ryu J; Hu X; Shadden SC
    J Biomech Eng; 2015 Oct; 137(10):101009. PubMed ID: 26287937
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Function of circle of Willis.
    Vrselja Z; Brkic H; Mrdenovic S; Radic R; Curic G
    J Cereb Blood Flow Metab; 2014 Apr; 34(4):578-84. PubMed ID: 24473483
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Influence of the carotid rete on brain temperature in cats exposed to hot environments.
    Baker MA
    J Physiol; 1972 Feb; 220(3):711-28. PubMed ID: 4335731
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Exposure of the anterior part of the circle of Willis in the dog. Technical note.
    Hori S; Himwich WA
    J Neurosurg; 1974 Jul; 41(1):107-12. PubMed ID: 4834200
    [No Abstract]   [Full Text] [Related]  

  • 74. ENGINEERING ANALYSIS OF THE HEMODYNAMICS OF THE CIRCLE OF WILLIS.
    CLARK ME; MARTIN JD; WENGLARZ RA; HIMWICH WA; KNAPP FM
    Arch Neurol; 1965 Aug; 13():173-82. PubMed ID: 14315669
    [No Abstract]   [Full Text] [Related]  

  • 75. Effects of altering arterial carbon dioxide pressure on internal carotid blood flow and cerebrospinal fluid pressure in man.
    Hayes TM; Tindall GT
    Surg Forum; 1969; 20():421-4. PubMed ID: 5383105
    [No Abstract]   [Full Text] [Related]  

  • 76. [Compensatory mechanisms in intra- and extracranial vascular occlusions (author's transl)].
    Fricke VM
    Rofo; 1975 Jun; 122(6):481-92. PubMed ID: 125702
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Collateral ability of the circle of Willis in patients with unilateral internal carotid artery occlusion: border zone infarcts and clinical symptoms.
    Hendrikse J; Hartkamp MJ; Hillen B; Mali WP; van der Grond J
    Stroke; 2001 Dec; 32(12):2768-73. PubMed ID: 11739971
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Paravascular spaces at the brain surface: Low resistance pathways for cerebrospinal fluid flow.
    Bedussi B; Almasian M; de Vos J; VanBavel E; Bakker EN
    J Cereb Blood Flow Metab; 2018 Apr; 38(4):719-726. PubMed ID: 29039724
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Anatomy of the circle of Willis and blood flow in the brain-feeding vasculature in prematurely born infants.
    van Kooij BJ; Hendrikse J; Benders MJ; de Vries LS; Groenendaal F
    Neonatology; 2010; 97(3):235-41. PubMed ID: 19887852
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A 3D numerical study of the collateral capacity of the Circle of Willis with anatomical variation in the posterior circulation.
    Ren Y; Chen Q; Li ZY
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S11. PubMed ID: 25603312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.