BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 11177572)

  • 1. An alternative-exon database and its statistical analysis.
    Stamm S; Zhu J; Nakai K; Stoilov P; Stoss O; Zhang MQ
    DNA Cell Biol; 2000 Dec; 19(12):739-56. PubMed ID: 11177572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions.
    Thanaraj TA; Clark F
    Nucleic Acids Res; 2001 Jun; 29(12):2581-93. PubMed ID: 11410667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strong exonic splicing enhancer in dystrophin exon 19 achieve proper splicing without an upstream polypyrimidine tract.
    Habara Y; Doshita M; Hirozawa S; Yokono Y; Yagi M; Takeshima Y; Matsuo M
    J Biochem; 2008 Mar; 143(3):303-10. PubMed ID: 18039686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Familial adenomatous polyposis: aberrant splicing due to missense or silent mutations in the APC gene.
    Aretz S; Uhlhaas S; Sun Y; Pagenstecher C; Mangold E; Caspari R; Möslein G; Schulmann K; Propping P; Friedl W
    Hum Mutat; 2004 Nov; 24(5):370-80. PubMed ID: 15459959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual intron conservation near tissue-regulated exons found by splicing microarrays.
    Sugnet CW; Srinivasan K; Clark TA; O'Brien G; Cline MS; Wang H; Williams A; Kulp D; Blume JE; Haussler D; Ares M
    PLoS Comput Biol; 2006 Jan; 2(1):e4. PubMed ID: 16424921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionarily emerged G tracts between the polypyrimidine tract and 3' AG are splicing silencers enriched in genes involved in cancer.
    Sohail M; Cao W; Mahmood N; Myschyshyn M; Hong SP; Xie J
    BMC Genomics; 2014 Dec; 15(1):1143. PubMed ID: 25523808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.
    Wu X; Hurst LD
    Mol Biol Evol; 2015 Jul; 32(7):1847-61. PubMed ID: 25771198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved RNA cis-elements regulate alternative splicing of Lepidopteran doublesex.
    Wang XY; Zheng ZZ; Song HS; Xu YZ
    Insect Biochem Mol Biol; 2014 Jan; 44():1-11. PubMed ID: 24239545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human.
    Clark F; Thanaraj TA
    Hum Mol Genet; 2002 Feb; 11(4):451-64. PubMed ID: 11854178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulated splicing of an alternative exon of beta-tropomyosin pre-mRNAs in myogenic cells depends on the strength of pyrimidine-rich intronic enhancer elements.
    Pret AM; Balvay L; Fiszman MY
    DNA Cell Biol; 1999 Sep; 18(9):671-83. PubMed ID: 10492398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in alternative splicing across human tissues.
    Yeo G; Holste D; Kreiman G; Burge CB
    Genome Biol; 2004; 5(10):R74. PubMed ID: 15461793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of the bovine papillomavirus type 1 late-stage-specific nucleotide 3605 3' splice site is modulated by a novel exonic bipartite regulator but not by an intronic purine-rich element.
    Zheng ZM; Reid ES; Baker CC
    J Virol; 2000 Nov; 74(22):10612-22. PubMed ID: 11044105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene.
    Romano M; Marcucci R; Baralle FE
    Nucleic Acids Res; 2001 Feb; 29(4):886-94. PubMed ID: 11160920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The "alternative" choice of constitutive exons throughout evolution.
    Lev-Maor G; Goren A; Sela N; Kim E; Keren H; Doron-Faigenboim A; Leibman-Barak S; Pupko T; Ast G
    PLoS Genet; 2007 Nov; 3(11):e203. PubMed ID: 18020709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of exonic splicing enhancer elements in human genes.
    Wu Y; Zhang Y; Zhang J
    Genomics; 2005 Sep; 86(3):329-36. PubMed ID: 16005179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of common single-nucleotide polymorphisms on exon 9 and exon 12 skipping in nonmutated CFTR alleles.
    Steiner B; Truninger K; Sanz J; Schaller A; Gallati S
    Hum Mutat; 2004 Aug; 24(2):120-9. PubMed ID: 15241793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational survey of candidate exonic splicing enhancer motifs in the model plant Arabidopsis thaliana.
    Pertea M; Mount SM; Salzberg SL
    BMC Bioinformatics; 2007 May; 8():159. PubMed ID: 17517127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The emergence of alternative 3' and 5' splice site exons from constitutive exons.
    Koren E; Lev-Maor G; Ast G
    PLoS Comput Biol; 2007 May; 3(5):e95. PubMed ID: 17530917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of minigene systems to dissect alternative splicing elements.
    Cooper TA
    Methods; 2005 Dec; 37(4):331-40. PubMed ID: 16314262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ASD: the Alternative Splicing Database.
    Thanaraj TA; Stamm S; Clark F; Riethoven JJ; Le Texier V; Muilu J
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D64-9. PubMed ID: 14681360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.