These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11177913)

  • 1. Structural deformation and intertube conductance of crossed carbon nanotube junctions.
    Yoon YG; Mazzoni MS; Choi HJ; Ihm J; Louie SG
    Phys Rev Lett; 2001 Jan; 86(4):688-91. PubMed ID: 11177913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of gating and pressure on the electronic transport properties of crossed nanotube junctions: formation of a Schottky barrier.
    Havu P; Hashemi MJ; Kaukonen M; Seppälä ET; Nieminen RM
    J Phys Condens Matter; 2011 Mar; 23(11):112203. PubMed ID: 21358037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of intertube interactions in double- and triple-walled carbon nanotubes.
    Hirschmann TCh; Araujo PT; Muramatsu H; Rodriguez-Nieva JF; Seifert M; Nielsch K; Kim YA; Dresselhaus MS
    ACS Nano; 2014 Feb; 8(2):1330-41. PubMed ID: 24456167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant piezoresistivity in aligned carbon nanotube nanocomposite: account for nanotube structural distortion at crossed tunnel junctions.
    Gong S; Zhu ZH
    Nanoscale; 2015 Jan; 7(4):1339-48. PubMed ID: 25492244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-walled carbon nanotube array for CO2 and SO2 adsorption.
    Rahimi M; Babu DJ; Singh JK; Yang YB; Schneider JJ; Müller-Plathe F
    J Chem Phys; 2015 Sep; 143(12):124701. PubMed ID: 26429026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy dissipation of high-speed nanobearings from double-walled carbon nanotubes.
    Zhu C; Guo W; Yu T
    Nanotechnology; 2008 Nov; 19(46):465703. PubMed ID: 21836258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic transport between graphene layers covalently connected by carbon nanotubes.
    Novaes FD; Rurali R; Ordejón P
    ACS Nano; 2010 Dec; 4(12):7596-602. PubMed ID: 21186844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation.
    Tombler TW; Zhou C; Alexseyev L; Kong J; Dai H; Liu L; Jayanthi CS; Tang M; Wu SY
    Nature; 2000 Jun; 405(6788):769-72. PubMed ID: 10866192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy.
    Hirschmann TCh; Araujo PT; Muramatsu H; Zhang X; Nielsch K; Kim YA; Dresselhaus MS
    ACS Nano; 2013 Mar; 7(3):2381-7. PubMed ID: 23311296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcement of single-walled carbon nanotube bundles by intertube bridging.
    Kis A; Csányi G; Salvetat JP; Lee TN; Couteau E; Kulik AJ; Benoit W; Brugger J; Forró L
    Nat Mater; 2004 Mar; 3(3):153-7. PubMed ID: 14991016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductance oscillations in squashed carbon nanotubes.
    Gómez-Navarro C; Sáenz JJ; Gómez-Herrero J
    Phys Rev Lett; 2006 Feb; 96(7):076803. PubMed ID: 16606123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties.
    Pan H; Feng YP; Lin J
    Nanotechnology; 2008 Mar; 19(9):095707. PubMed ID: 21817689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic transport through carbon nanotubes: effects of structural deformation and tube chirality.
    Maiti A; Svizhenko A; Anantram MP
    Phys Rev Lett; 2002 Mar; 88(12):126805. PubMed ID: 11909492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of intertube van der Waals interaction on the stability of pristine and functionalized carbon nanotubes under compression.
    Kuang YD; Shi SQ; Chan PK; Chen CY
    Nanotechnology; 2010 Mar; 21(12):125704. PubMed ID: 20195018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contact geometry and conductance of crossed nanotube junctions under pressure.
    Bulat FA; Couchman L; Yang W
    Nano Lett; 2009 May; 9(5):1759-63. PubMed ID: 19331377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion: a combined TEM and resonant micro-raman spectroscopy study.
    Shen K; Curran S; Xu H; Rogelj S; Jiang Y; Dewald J; Pietrass T
    J Phys Chem B; 2005 Mar; 109(10):4455-63. PubMed ID: 16851517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes.
    Ouyang M; Huang JL; Lieber CM
    Annu Rev Phys Chem; 2002; 53():201-20. PubMed ID: 11972007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning gate imaging of two coupled quantum dots in single-walled carbon nanotubes.
    Zhou X; Hedberg J; Miyahara Y; Grutter P; Ishibashi K
    Nanotechnology; 2014 Dec; 25(49):495703. PubMed ID: 25412585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanotube-metal junctions: 2- and 3-terminal electrical transport.
    Ke SH; Yang W; Baranger HU
    J Chem Phys; 2006 May; 124(18):181102. PubMed ID: 16709090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles calculation on the conductance of a single 1,4-diisocyanatobenzene molecule with single-walled carbon nanotubes as the electrodes.
    Qian Z; Hou S; Ning J; Li R; Shen Z; Zhao X; Xue Z
    J Chem Phys; 2007 Feb; 126(8):084705. PubMed ID: 17343467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.