These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 11177913)
21. Phonon-Assisted Intertube Electronic Transport in an Armchair Carbon Nanotube Film. Adinehloo D; Gao W; Mojibpour A; Kono J; Perebeinos V Phys Rev Lett; 2023 Apr; 130(17):176303. PubMed ID: 37172236 [TBL] [Abstract][Full Text] [Related]
22. Direct Intertube Cross-Linking of Carbon Nanotubes at Room Temperature. Gao Y; Chen H; Ge J; Zhao J; Li Q; Tang J; Cui Y; Chen L Nano Lett; 2016 Oct; 16(10):6541-6547. PubMed ID: 27658002 [TBL] [Abstract][Full Text] [Related]
23. First-principles methodology for quantum transport in multiterminal junctions. Saha KK; Lu W; Bernholc J; Meunier V J Chem Phys; 2009 Oct; 131(16):164105. PubMed ID: 19894925 [TBL] [Abstract][Full Text] [Related]
24. Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. Blackburn JL; Barnes TM; Beard MC; Kim YH; Tenent RC; McDonald TJ; To B; Coutts TJ; Heben MJ ACS Nano; 2008 Jun; 2(6):1266-74. PubMed ID: 19206344 [TBL] [Abstract][Full Text] [Related]
25. Solution-mediated selective nanosoldering of carbon nanotube junctions for improved device performance. Do JW; Chang NN; Estrada D; Lian F; Cha H; Duan XJ; Haasch RT; Pop E; Girolami GS; Lyding JW ACS Nano; 2015 May; 9(5):4806-13. PubMed ID: 25844819 [TBL] [Abstract][Full Text] [Related]
26. Amphoteric doping of carbon nanotubes by encapsulation of organic molecules: electronic properties and quantum conductance. Meunier V; Sumpter BG J Chem Phys; 2005 Jul; 123(2):24705. PubMed ID: 16050764 [TBL] [Abstract][Full Text] [Related]
27. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes. Bichoutskaia E; Pyper NC J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212 [TBL] [Abstract][Full Text] [Related]
28. Encapsulated inorganic nanostructures: a route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes. Ilie A; Bendall JS; Nagaoka K; Egger S; Nakayama T; Crampin S ACS Nano; 2011 Apr; 5(4):2559-69. PubMed ID: 21370812 [TBL] [Abstract][Full Text] [Related]
29. Extraction of intercalated O2 from aligned carbon nanotubes: the breaking of intertube paths and exponential changes in resistance. Tsai HJ; Lin WY; Chin W; Tsai TY; Hsu WK Chemphyschem; 2015 Aug; 16(12):2625-9. PubMed ID: 26102519 [TBL] [Abstract][Full Text] [Related]
30. Toward single-chirality carbon nanotube device arrays. Vijayaraghavan A; Hennrich F; Stürzl N; Engel M; Ganzhorn M; Oron-Carl M; Marquardt CW; Dehm S; Lebedkin S; Kappes MM; Krupke R ACS Nano; 2010 May; 4(5):2748-54. PubMed ID: 20408580 [TBL] [Abstract][Full Text] [Related]
32. Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers. Zhang X; Li Q ACS Nano; 2010 Jan; 4(1):312-6. PubMed ID: 20020757 [TBL] [Abstract][Full Text] [Related]
33. Investigation of the effects of commensurability on friction between concentric carbon nanotubes. Zhu C; Shenai PM; Zhao Y Nanotechnology; 2012 Jan; 23(1):015702. PubMed ID: 22156240 [TBL] [Abstract][Full Text] [Related]
34. On the sensing mechanism in carbon nanotube chemiresistors. Salehi-Khojin A; Khalili-Araghi F; Kuroda MA; Lin KY; Leburton JP; Masel RI ACS Nano; 2011 Jan; 5(1):153-8. PubMed ID: 21186822 [TBL] [Abstract][Full Text] [Related]
35. Magnetoresistance devices based on single-walled carbon nanotubes. Hod O; Rabani E; Baer R J Chem Phys; 2005 Aug; 123(5):051103. PubMed ID: 16108619 [TBL] [Abstract][Full Text] [Related]
36. Engineering radial deformations in single-walled carbon and boron nitride nanotubes using ultrathin nanomembranes. Zheng M; Zou LF; Wang H; Park C; Ke C ACS Nano; 2012 Feb; 6(2):1814-22. PubMed ID: 22280493 [TBL] [Abstract][Full Text] [Related]
37. Band structure and quantum conductance of nanostructures from maximally localized Wannier functions: the case of functionalized carbon nanotubes. Lee YS; Nardelli MB; Marzari N Phys Rev Lett; 2005 Aug; 95(7):076804. PubMed ID: 16196812 [TBL] [Abstract][Full Text] [Related]
38. Chemically active substitutional nitrogen impurity in carbon nanotubes. Nevidomskyy AH; Csányi G; Payne MC Phys Rev Lett; 2003 Sep; 91(10):105502. PubMed ID: 14525489 [TBL] [Abstract][Full Text] [Related]
39. Vacancy formation process in carbon nanotubes: first-principles approach. Rossato J; Baierle RJ; Fazzio A; Mota R Nano Lett; 2005 Jan; 5(1):197-200. PubMed ID: 15792439 [TBL] [Abstract][Full Text] [Related]
40. Improving the electrical conductivity of carbon nanotube networks: a first-principles study. Li EY; Marzari N ACS Nano; 2011 Dec; 5(12):9726-36. PubMed ID: 22059779 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]