These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 111780)

  • 1. Monkey pyramidal tract neurons and changes of movement parameters in visual tracking.
    Hamada I; Kubota K
    Brain Res Bull; 1979; 4(2):249-57. PubMed ID: 111780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of monkey pyramidal tract neuron activity to movement velocity in rapid wrist flexion movement.
    Hamada I
    Brain Res; 1981 Dec; 230(1-2):384-9. PubMed ID: 6797678
    [No Abstract]   [Full Text] [Related]  

  • 3. Preparatory activity of monkey pyramidal tract neurons related to quick movement onset during visual tracking performance.
    Kubota K; Hamada I
    Brain Res; 1979 May; 168(2):435-9. PubMed ID: 109169
    [No Abstract]   [Full Text] [Related]  

  • 4. Antidromic latency of the monkey pyramidal tract neuron related to ipsilateral hand movements.
    Matsunami K; Hamada I
    Neurosci Lett; 1980 Mar; 16(3):245-9. PubMed ID: 7052439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direction-specific activities of dorsolateral prefrontal and motor cortex pyramidal tract neurons during visual tracking.
    Kubota K; Funahashi S
    J Neurophysiol; 1982 Mar; 47(3):362-76. PubMed ID: 7069449
    [No Abstract]   [Full Text] [Related]  

  • 6. Relation of size and activity of motor cortex pyramidal tract neurons during skilled movements in the monkey.
    Fromm C; Evarts EV
    J Neurosci; 1981 May; 1(5):453-60. PubMed ID: 6809905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primate rubromotoneuronal cells: parametric relations and contribution to wrist movement.
    Mewes K; Cheney PD
    J Neurophysiol; 1994 Jul; 72(1):14-30. PubMed ID: 7965000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyramidal tract neurons in somatosensory cortex: central and peripheral inputs during voluntary movement.
    Fromm C; Evarts EV
    Brain Res; 1982 Apr; 238(1):186-91. PubMed ID: 6805854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs.
    Drew T
    J Neurophysiol; 1993 Jul; 70(1):179-99. PubMed ID: 8360715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular synaptic potentials of primate motor cortex neurons during voluntary movement.
    Matsumura M
    Brain Res; 1979 Mar; 163(1):33-48. PubMed ID: 106926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple-spike activity of cerebellar Purkinje cells related to visually guided wrist tracking movement in the monkey.
    Mano N; Yamamoto K
    J Neurophysiol; 1980 Mar; 43(3):713-28. PubMed ID: 6768848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Premotor cortex of monkeys: set- and movement-related activity reflecting amplitude and direction of wrist movements.
    Kurata K
    J Neurophysiol; 1993 Jan; 69(1):187-200. PubMed ID: 8433130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflex and intended responses in motor cortex pyramidal tract neurons of monkey.
    Evarts EV; Tanji J
    J Neurophysiol; 1976 Sep; 39(5):1069-80. PubMed ID: 824410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory response properties of pyramidal tract neurons in the precentral motor cortex and postcentral gyrus of the rhesus monkey.
    Fromm C; Wise SP; Evarts EV
    Exp Brain Res; 1984; 54(1):177-85. PubMed ID: 6698144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization in monkey motor cortex during a precision grip task. II. effect of oscillatory activity on corticospinal output.
    Baker SN; Pinches EM; Lemon RN
    J Neurophysiol; 2003 Apr; 89(4):1941-53. PubMed ID: 12686573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticostriatal cells in comparison with pyramidal tract neurons: contrasting properties in the behaving monkey.
    Bauswein E; Fromm C; Preuss A
    Brain Res; 1989 Jul; 493(1):198-203. PubMed ID: 2776007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activity of primary motor cortex corticospinal neurons during tool use by macaque monkeys.
    Quallo MM; Kraskov A; Lemon RN
    J Neurosci; 2012 Nov; 32(48):17351-64. PubMed ID: 23197726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supplementary motor area and premotor area of monkey cerebral cortex: functional organization and activities of single neurons during performance of a learned movement.
    Brinkman C; Porter R
    Adv Neurol; 1983; 39():393-420. PubMed ID: 6419554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the basal ganglia in controlling a movement initiated by a visually presented cue.
    Aldridge JW; Anderson RJ; Murphy JT
    Brain Res; 1980 Jun; 192(1):3-16. PubMed ID: 6769544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual tracking and neuron activity in the post-arcuate area in monkeys.
    Kubota K; Hamada I
    J Physiol (Paris); 1978; 74(3):297-312. PubMed ID: 102777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.