These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 11178018)

  • 1. Edge electron states for quasi-one-dimensional organic conductors in the magnetic-field-induced spin-density-wave phases.
    Sengupta K; Kwon HJ; Yakovenko VM
    Phys Rev Lett; 2001 Feb; 86(6):1094-7. PubMed ID: 11178018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunnelling between the edges of two lateral quantum Hall systems.
    Kang W; Stormer HL; Pfeiffer LN; Baldwin KW; West KW
    Nature; 2000 Jan; 403(6765):59-61. PubMed ID: 10638749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for spin-charge separation in quasi-one-dimensional organic conductors.
    Lorenz T; Hofmann M; Grüninger M; Freimuth A; Uhrig GS; Dumm M; Dressel M
    Nature; 2002 Aug; 418(6898):614-7. PubMed ID: 12167854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triplet superconducting pairing and density-wave instabilities in organic conductors.
    Nickel JC; Duprat R; Bourbonnais C; Dupuis N
    Phys Rev Lett; 2005 Dec; 95(24):247001. PubMed ID: 16384408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer.
    Sanchez-Yamagishi JD; Luo JY; Young AF; Hunt BM; Watanabe K; Taniguchi T; Ashoori RC; Jarillo-Herrero P
    Nat Nanotechnol; 2017 Feb; 12(2):118-122. PubMed ID: 27798608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral topological phases and fractional domain wall excitations in one-dimensional chains and wires.
    Väyrynen JI; Ojanen T
    Phys Rev Lett; 2011 Oct; 107(16):166804. PubMed ID: 22107417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confinement-deconfinement transition due to spontaneous symmetry breaking in quantum Hall bilayers.
    Pikulin DI; Silvestrov PG; Hyart T
    Nat Commun; 2016 Jan; 7():10462. PubMed ID: 26804790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Counter-propagating charge transport in the quantum Hall effect regime.
    Lafont F; Rosenblatt A; Heiblum M; Umansky V
    Science; 2019 Jan; 363(6422):54-57. PubMed ID: 30606839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luttinger liquid at the edge of undoped graphene in a strong magnetic field.
    Fertig HA; Brey L
    Phys Rev Lett; 2006 Sep; 97(11):116805. PubMed ID: 17025918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological edge states in the spin 1 bilinear-biquadratic model.
    Li P; Kou SP
    J Phys Condens Matter; 2012 Nov; 24(44):446001. PubMed ID: 23053205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Edge states in graphene: from gapped flat-band to gapless chiral modes.
    Yao W; Yang SA; Niu Q
    Phys Rev Lett; 2009 Mar; 102(9):096801. PubMed ID: 19392547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Edge mixing dynamics in graphene p-n junctions in the quantum Hall regime.
    Matsuo S; Takeshita S; Tanaka T; Nakaharai S; Tsukagoshi K; Moriyama T; Ono T; Kobayashi K
    Nat Commun; 2015 Sep; 6():8066. PubMed ID: 26337445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Counter-propagating edge modes and topological phases of a kicked quantum Hall system.
    Lababidi M; Satija II; Zhao E
    Phys Rev Lett; 2014 Jan; 112(2):026805. PubMed ID: 24484039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological edge states and fractional quantum Hall effect from umklapp scattering.
    Klinovaja J; Loss D
    Phys Rev Lett; 2013 Nov; 111(19):196401. PubMed ID: 24266479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing edge states with an atomic Bose gas in the quantum Hall regime.
    Stuhl BK; Lu HI; Aycock LM; Genkina D; Spielman IB
    Science; 2015 Sep; 349(6255):1514-8. PubMed ID: 26404830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetry-protected quantum spin Hall phases in two dimensions.
    Liu ZX; Wen XG
    Phys Rev Lett; 2013 Feb; 110(6):067205. PubMed ID: 23432300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.
    Vasseur R; Moore JE
    Phys Rev Lett; 2014 Apr; 112(14):146804. PubMed ID: 24766003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model characterization of gapless edge modes of topological insulators using intermediate Brillouin-zone functions.
    Fidkowski L; Jackson TS; Klich I
    Phys Rev Lett; 2011 Jul; 107(3):036601. PubMed ID: 21838384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connection of edge states to bulk topological invariance in a quantum spin Hall state.
    Li H; Sheng L; Xing DY
    Phys Rev Lett; 2012 May; 108(19):196806. PubMed ID: 23003075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin-nematic and spin-density-wave orders in spatially anisotropic frustrated magnets in a magnetic field.
    Sato M; Hikihara T; Momoi T
    Phys Rev Lett; 2013 Feb; 110(7):077206. PubMed ID: 25166403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.