These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Collapse and revival of the matter wave field of a Bose-Einstein condensate. Greiner M; Mandel O; Hänsch TW; Bloch I Nature; 2002 Sep; 419(6902):51-4. PubMed ID: 12214228 [TBL] [Abstract][Full Text] [Related]
3. Single ions trapped in a one-dimensional optical lattice. Enderlein M; Huber T; Schneider C; Schaetz T Phys Rev Lett; 2012 Dec; 109(23):233004. PubMed ID: 23368193 [TBL] [Abstract][Full Text] [Related]
5. Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps. Abdelrahman A; Mukai T; Häffner H; Byrnes T Opt Express; 2014 Feb; 22(3):3501-13. PubMed ID: 24663640 [TBL] [Abstract][Full Text] [Related]
6. Large atom number Bose-Einstein condensate of sodium. van der Stam KM; van Ooijen ED; Meppelink R; Vogels JM; van der Straten P Rev Sci Instrum; 2007 Jan; 78(1):013102. PubMed ID: 17503902 [TBL] [Abstract][Full Text] [Related]
7. Generation of three-dimensional entangled state between a single atom and a Bose-Einstein condensate via adiabatic passage. Chen LB; Shi P; Zheng CH; Gu YJ Opt Express; 2012 Jun; 20(13):14547-55. PubMed ID: 22714516 [TBL] [Abstract][Full Text] [Related]
8. Controllable soliton emission from a Bose-Einstein condensate. Rodas-Verde MI; Michinel H; Pérez-García VM Phys Rev Lett; 2005 Oct; 95(15):153903. PubMed ID: 16241727 [TBL] [Abstract][Full Text] [Related]
9. Time-averaged adiabatic potentials: versatile matter-wave guides and atom traps. Lesanovsky I; von Klitzing W Phys Rev Lett; 2007 Aug; 99(8):083001. PubMed ID: 17930945 [TBL] [Abstract][Full Text] [Related]
10. Atom chip apparatus for experiments with ultracold rubidium and potassium gases. Ivory MK; Ziltz AR; Fancher CT; Pyle AJ; Sensharma A; Chase B; Field JP; Garcia A; Jervis D; Aubin S Rev Sci Instrum; 2014 Apr; 85(4):043102. PubMed ID: 24784588 [TBL] [Abstract][Full Text] [Related]
11. Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. Ruseckas J; Juzeliūnas G; Ohberg P; Fleischhauer M Phys Rev Lett; 2005 Jul; 95(1):010404. PubMed ID: 16090590 [TBL] [Abstract][Full Text] [Related]
12. All-optical realization of an atom laser. Cennini G; Ritt G; Geckeler C; Weitz M Phys Rev Lett; 2003 Dec; 91(24):240408. PubMed ID: 14683100 [TBL] [Abstract][Full Text] [Related]
13. Squeezed states in a Bose-Einstein condensate. Orzel C; Tuchman AK; Fenselau ML; Yasuda M; Kasevich MA Science; 2001 Mar; 291(5512):2386-9. PubMed ID: 11264529 [TBL] [Abstract][Full Text] [Related]
14. Formation of a matter-wave bright soliton. Khaykovich L; Schreck F; Ferrari G; Bourdel T; Cubizolles J; Carr LD; Castin Y; Salomon C Science; 2002 May; 296(5571):1290-3. PubMed ID: 12016308 [TBL] [Abstract][Full Text] [Related]
15. Phases of a two-dimensional bose gas in an optical lattice. Jiménez-García K; Compton RL; Lin YJ; Phillips WD; Porto JV; Spielman IB Phys Rev Lett; 2010 Sep; 105(11):110401. PubMed ID: 20867555 [TBL] [Abstract][Full Text] [Related]
16. Bose-Einstein condensation in a surface microtrap. Ott H; Fortagh J; Schlotterbeck G; Grossmann A; Zimmermann C Phys Rev Lett; 2001 Dec; 87(23):230401. PubMed ID: 11736434 [TBL] [Abstract][Full Text] [Related]
17. Creating a stable molecular condensate using a generalized Raman adiabatic passage scheme. Ling HY; Pu H; Seaman B Phys Rev Lett; 2004 Dec; 93(25):250403. PubMed ID: 15697877 [TBL] [Abstract][Full Text] [Related]
18. Spontaneous formation and nonequilibrium dynamics of a soliton-shaped Bose-Einstein condensate in a trap. Berman OL; Kezerashvili RY; Kolmakov GV; Pomirchi LM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062901. PubMed ID: 26172766 [TBL] [Abstract][Full Text] [Related]
19. Coherent control of optical information with matter wave dynamics. Ginsberg NS; Garner SR; Hau LV Nature; 2007 Feb; 445(7128):623-6. PubMed ID: 17287804 [TBL] [Abstract][Full Text] [Related]