These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
445 related articles for article (PubMed ID: 11178910)
1. A thermophilic mini-chaperonin contains a conserved polypeptide-binding surface: combined crystallographic and NMR studies of the GroEL apical domain with implications for substrate interactions. Hua Q; Dementieva IS; Walsh MA; Hallenga K; Weiss MA; Joachimiak A J Mol Biol; 2001 Feb; 306(3):513-25. PubMed ID: 11178910 [TBL] [Abstract][Full Text] [Related]
2. The dimerization domain of HNF-1alpha: structure and plasticity of an intertwined four-helix bundle with application to diabetes mellitus. Narayana N; Hua Q; Weiss MA J Mol Biol; 2001 Jul; 310(3):635-58. PubMed ID: 11439029 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of the native chaperonin complex from Thermus thermophilus revealed unexpected asymmetry at the cis-cavity. Shimamura T; Koike-Takeshita A; Yokoyama K; Masui R; Murai N; Yoshida M; Taguchi H; Iwata S Structure; 2004 Aug; 12(8):1471-80. PubMed ID: 15296740 [TBL] [Abstract][Full Text] [Related]
4. The solution structure of ribosomal protein L36 from Thermus thermophilus reveals a zinc-ribbon-like fold. Härd T; Rak A; Allard P; Kloo L; Garber M J Mol Biol; 2000 Feb; 296(1):169-80. PubMed ID: 10656825 [TBL] [Abstract][Full Text] [Related]
5. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain. Lee KW; Briggs JM Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565 [TBL] [Abstract][Full Text] [Related]
6. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle. Tehver R; Chen J; Thirumalai D J Mol Biol; 2009 Mar; 387(2):390-406. PubMed ID: 19121324 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of Hsc20, a J-type Co-chaperone from Escherichia coli. Cupp-Vickery JR; Vickery LE J Mol Biol; 2000 Dec; 304(5):835-45. PubMed ID: 11124030 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic stability and folding of GroEL minichaperones. Golbik R; Zahn R; Harding SE; Fersht AR J Mol Biol; 1998 Feb; 276(2):505-15. PubMed ID: 9512719 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of chaperonin-60 from Paracoccus denitrificans. Fukami TA; Yohda M; Taguchi H; Yoshida M; Miki K J Mol Biol; 2001 Sep; 312(3):501-9. PubMed ID: 11563912 [TBL] [Abstract][Full Text] [Related]
10. Secondary structure forming propensity coupled with amphiphilicity is an optimal motif in a peptide or protein for association with chaperonin 60 (GroEL). Preuss M; Hutchinson JP; Miller AD Biochemistry; 1999 Aug; 38(32):10272-86. PubMed ID: 10441121 [TBL] [Abstract][Full Text] [Related]
11. GroEL recognises sequential and non-sequential linear structural motifs compatible with extended beta-strands and alpha-helices. Chatellier J; Buckle AM; Fersht AR J Mol Biol; 1999 Sep; 292(1):163-72. PubMed ID: 10493865 [TBL] [Abstract][Full Text] [Related]
12. Structural stability and domain organization of colicin E1. Griko YV; Zakharov SD; Cramer WA J Mol Biol; 2000 Sep; 302(4):941-53. PubMed ID: 10993734 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional structure of the DNA-binding domain of the fructose repressor from Escherichia coli by 1H and 15N NMR. Penin F; Geourjon C; Montserret R; Böckmann A; Lesage A; Yang YS; Bonod-Bidaud C; Cortay JC; Nègre D; Cozzone AJ; Deléage G J Mol Biol; 1997 Jul; 270(3):496-510. PubMed ID: 9237914 [TBL] [Abstract][Full Text] [Related]
14. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability. Christodoulou E; Rypniewski WR; Vorgias CR Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263 [TBL] [Abstract][Full Text] [Related]
15. From minichaperone to GroEL 1: information on GroEL-polypeptide interactions from crystal packing of minichaperones. Wang Q; Buckle AM; Fersht AR J Mol Biol; 2000 Dec; 304(5):873-81. PubMed ID: 11124033 [TBL] [Abstract][Full Text] [Related]
16. Identification of substrate binding site of GroEL minichaperone in solution. Tanaka N; Fersht AR J Mol Biol; 1999 Sep; 292(1):173-80. PubMed ID: 10493866 [TBL] [Abstract][Full Text] [Related]
17. The high-resolution structure of the peripheral subunit-binding domain of dihydrolipoamide acetyltransferase from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Kalia YN; Brocklehurst SM; Hipps DS; Appella E; Sakaguchi K; Perham RN J Mol Biol; 1993 Mar; 230(1):323-41. PubMed ID: 8450544 [TBL] [Abstract][Full Text] [Related]
18. Residues in chaperonin GroEL required for polypeptide binding and release. Fenton WA; Kashi Y; Furtak K; Horwich AL Nature; 1994 Oct; 371(6498):614-9. PubMed ID: 7935796 [TBL] [Abstract][Full Text] [Related]
19. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL. Chatellier J; Hill F; Foster NW; Goloubinoff P; Fersht AR J Mol Biol; 2000 Dec; 304(5):897-910. PubMed ID: 11124035 [TBL] [Abstract][Full Text] [Related]
20. X-ray crystallographic and NMR studies of pantothenate synthetase provide insights into the mechanism of homotropic inhibition by pantoate. Chakrabarti KS; Thakur KG; Gopal B; Sarma SP FEBS J; 2010 Feb; 277(3):697-712. PubMed ID: 20059543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]