BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11178968)

  • 21. Structural insights into the substrate specificity and activity of ervatamins, the papain-like cysteine proteases from a tropical plant, Ervatamia coronaria.
    Ghosh R; Chakraborty S; Chakrabarti C; Dattagupta JK; Biswas S
    FEBS J; 2008 Feb; 275(3):421-34. PubMed ID: 18167146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape-specific nucleotide binding of single-stranded RNA by the GLD-1 STAR domain.
    Lehmann-Blount KA; Williamson JR
    J Mol Biol; 2005 Feb; 346(1):91-104. PubMed ID: 15663930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the S4 and S1 prime subsite specificities in caspase-3 with aza-peptide epoxide inhibitors.
    Ganesan R; Jelakovic S; Campbell AJ; Li ZZ; Asgian JL; Powers JC; Grütter MG
    Biochemistry; 2006 Aug; 45(30):9059-67. PubMed ID: 16866351
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative modeling of TNFRSF25 (DR3) predicts receptor destabilization by a mutation linked to rheumatoid arthritis.
    Borysenko CW; Furey WF; Blair HC
    Biochem Biophys Res Commun; 2005 Mar; 328(3):794-9. PubMed ID: 15694416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and reverse genetic analysis of mitochondrial processing peptidase and the core protein of the cytochrome bc1 complex of Caenorhabditis elegans, a model parasitic nematode.
    Nomura H; Athauda SB; Wada H; Maruyama Y; Takahashi K; Inoue H
    J Biochem; 2006 Jun; 139(6):967-79. PubMed ID: 16788047
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of the tertiary structure and substrate binding site of caspase-8.
    Chou KC; Jones D; Heinrikson RL
    FEBS Lett; 1997 Dec; 419(1):49-54. PubMed ID: 9426218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential influence of Asp in the Ca2+ coordination position 5 of parvalbumin on the calcium-binding affinity: a computational study.
    Zhao J; Nelson DJ; Huo S
    J Inorg Biochem; 2006 Nov; 100(11):1879-87. PubMed ID: 16965819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular mechanism of apoptosis: prediction of three-dimensional structure of caspase-6 and its interactions by homology modeling.
    Sattar R; Ali SA; Abbasi A
    Biochem Biophys Res Commun; 2003 Aug; 308(3):497-504. PubMed ID: 12914778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and biochemical studies on procaspase-8: new insights on initiator caspase activation.
    Keller N; Mares J; Zerbe O; Grütter MG
    Structure; 2009 Mar; 17(3):438-48. PubMed ID: 19278658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure, expression and function of Allomyces arbuscula CDP II (metacaspase) gene.
    Ojha M; Cattaneo A; Hugh S; Pawlowski J; Cox JA
    Gene; 2010 Jun; 457(1-2):25-34. PubMed ID: 20214955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protease activity of in vitro transcribed and translated Caenorhabditis elegans cell death gene (ced-3) product.
    Hugunin M; Quintal LJ; Mankovich JA; Ghayur T
    J Biol Chem; 1996 Feb; 271(7):3517-22. PubMed ID: 8631956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Homology modeling and mutagenesis analyses of Plasmodium falciparum falcipain 2A: implications for rational drug design.
    Goh LL; Sim TS
    Biochem Biophys Res Commun; 2004 Oct; 323(2):565-72. PubMed ID: 15369788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of sperm-specific protein SSP-19 from Caenorhabditis elegans.
    Schormann N; Symersky J; Luo M
    Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1840-5. PubMed ID: 15388931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural elements responsible for transglutaminase activity of protein disulphide isomerases and thioredoxins.
    Blaskó B; Mádi A; Fésüs L
    J Biol Regul Homeost Agents; 2004; 18(1):1-8. PubMed ID: 15323354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial endonuclease G is important for apoptosis in C. elegans.
    Parrish J; Li L; Klotz K; Ledwich D; Wang X; Xue D
    Nature; 2001 Jul; 412(6842):90-4. PubMed ID: 11452313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational similarity in the activation of caspase-3 and -7 revealed by the unliganded and inhibited structures of caspase-7.
    Agniswamy J; Fang B; Weber IT
    Apoptosis; 2009 Oct; 14(10):1135-44. PubMed ID: 19655253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutational analysis of the Caenorhabditis elegans cell-death gene ced-3.
    Shaham S; Reddien PW; Davies B; Horvitz HR
    Genetics; 1999 Dec; 153(4):1655-71. PubMed ID: 10581274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Caenorhabditis elegans and neuronal death in mammals].
    Selimi F; Mariani J; Martinou JC
    Rev Neurol (Paris); 1997 Sep; 153(8-9):478-83. PubMed ID: 9683996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans.
    Moon S; Lee YW; Kim WT; Lee W
    Biochem Biophys Res Commun; 2014 Jan; 443(2):370-5. PubMed ID: 24361878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.