These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 11179649)
41. Crystal structures of a phosphotransacetylase from Bacillus subtilis and its complex with acetyl phosphate. Xu QS; Jancarik J; Lou Y; Kuznetsova K; Yakunin AF; Yokota H; Adams P; Kim R; Kim SH J Struct Funct Genomics; 2005 Dec; 6(4):269-79. PubMed ID: 16283428 [TBL] [Abstract][Full Text] [Related]
42. A plasmid-born Rap-Phr system regulates surfactin production, sporulation and genetic competence in the heterologous host, Bacillus subtilis OKB105. Yang Y; Wu HJ; Lin L; Zhu QQ; Borriss R; Gao XW Appl Microbiol Biotechnol; 2015 Sep; 99(17):7241-52. PubMed ID: 25921807 [TBL] [Abstract][Full Text] [Related]
43. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Cosmina P; Rodriguez F; de Ferra F; Grandi G; Perego M; Venema G; van Sinderen D Mol Microbiol; 1993 May; 8(5):821-31. PubMed ID: 8355609 [TBL] [Abstract][Full Text] [Related]
44. Functional dissection of Escherichia coli phosphotransacetylase structural domains and analysis of key compounds involved in activity regulation. Campos-Bermudez VA; Bologna FP; Andreo CS; Drincovich MF FEBS J; 2010 Apr; 277(8):1957-66. PubMed ID: 20236319 [TBL] [Abstract][Full Text] [Related]
45. Mutational analysis and membrane topology of ComP, a quorum-sensing histidine kinase of Bacillus subtilis controlling competence development. Piazza F; Tortosa P; Dubnau D J Bacteriol; 1999 Aug; 181(15):4540-8. PubMed ID: 10419951 [TBL] [Abstract][Full Text] [Related]
46. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Magnuson R; Solomon J; Grossman AD Cell; 1994 Apr; 77(2):207-16. PubMed ID: 8168130 [TBL] [Abstract][Full Text] [Related]
47. Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Prüss BM; Wolfe AJ Mol Microbiol; 1994 Jun; 12(6):973-84. PubMed ID: 7934904 [TBL] [Abstract][Full Text] [Related]
49. Substitution of the native srfA promoter by constitutive Pveg in two B. subtilis strains and evaluation of the effect on Surfactin production. Willenbacher J; Mohr T; Henkel M; Gebhard S; Mascher T; Syldatk C; Hausmann R J Biotechnol; 2016 Apr; 224():14-7. PubMed ID: 26953743 [TBL] [Abstract][Full Text] [Related]
50. Amino-acylation site mutations in amino acid-activating domains of surfactin synthetase: effects on surfactin production and competence development in Bacillus subtilis. D'Souza C; Nakano MM; Corbell N; Zuber P J Bacteriol; 1993 Jun; 175(11):3502-10. PubMed ID: 8501054 [TBL] [Abstract][Full Text] [Related]
51. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Solomon JM; Magnuson R; Srivastava A; Grossman AD Genes Dev; 1995 Mar; 9(5):547-58. PubMed ID: 7698645 [TBL] [Abstract][Full Text] [Related]
52. Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli. Wanner BL; Wilmes-Riesenberg MR J Bacteriol; 1992 Apr; 174(7):2124-30. PubMed ID: 1551836 [TBL] [Abstract][Full Text] [Related]
53. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. Msadek T; Kunst F; Klier A; Rapoport G J Bacteriol; 1991 Apr; 173(7):2366-77. PubMed ID: 1901055 [TBL] [Abstract][Full Text] [Related]
54. Two-component signal transduction in Synechocystis sp. PCC 6803 under phosphate limitation: role of acetyl phosphate. Juntarajumnong W; Eaton-Rye JJ; Incharoensakdi A J Biochem Mol Biol; 2007 Sep; 40(5):708-14. PubMed ID: 17927904 [TBL] [Abstract][Full Text] [Related]
55. DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B.subtilis two-component regulatory systems. Ogura M; Yamaguchi H; Yoshida Ki ; Fujita Y; Tanaka T Nucleic Acids Res; 2001 Sep; 29(18):3804-13. PubMed ID: 11557812 [TBL] [Abstract][Full Text] [Related]
56. ComA-dependent transcriptional activation of lichenysin A synthetase promoter in Bacillus subtilis cells. Yakimov MM; Golyshin PN Biotechnol Prog; 1997; 13(6):757-61. PubMed ID: 9413133 [TBL] [Abstract][Full Text] [Related]
57. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Solomon JM; Lazazzera BA; Grossman AD Genes Dev; 1996 Aug; 10(16):2014-24. PubMed ID: 8769645 [TBL] [Abstract][Full Text] [Related]
58. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis. Hirooka K; Kodoi Y; Satomura T; Fujita Y J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933 [TBL] [Abstract][Full Text] [Related]
59. A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Hamoen LW; Eshuis H; Jongbloed J; Venema G; van Sinderen D Mol Microbiol; 1995 Jan; 15(1):55-63. PubMed ID: 7752896 [TBL] [Abstract][Full Text] [Related]
60. Genome-wide analysis of phosphorylated PhoP binding to chromosomal DNA reveals several novel features of the PhoPR-mediated phosphate limitation response in Bacillus subtilis. Salzberg LI; Botella E; Hokamp K; Antelmann H; Maaß S; Becher D; Noone D; Devine KM J Bacteriol; 2015 Apr; 197(8):1492-506. PubMed ID: 25666134 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]